APR. 19, 2021 第2講義

炭素の合成 (機能性炭素材の製造法)

Seong-Ho Yoon

IMCE, Kyushu University, Kasuga, Fukuoka, Japan

1. 炭素の種類

- 炭素質, 炭素, 黒鉛
- 易黒鉛性及び難黒鉛化性炭素
- 2. 気相, 液相および固相炭素化
- 3. 液相炭素化
 - ピッチおよび等方性コークス
 - 液相ピッチおよびニードルコークス
- 4. 気相炭素化
 - 炭素ナノ繊維の調製
- 5. 固相炭素化

- バイオマスを用いたLi-ion電池負極材の調製 6. まとめ

炭素材料

炭素材料:90%以上炭素によって構成された材料

人造炭素材料

1.炭素の種類 -炭素質,炭素,黒鉛 - 易黒鉛性及び難黒鉛化性炭素

炭素基礎(多様な炭素同素体)

Carbon Allotropes

炭素同素体の炭素-炭素結合

図-1 炭素の混成軌道

表-1 各種炭素-炭素結合の結合解離エネルギーと結合距離1)

化合物	結合解離エネルギー (kcal/mol)	結合距離 (À)	
H ₃ C-C ₃ H	88	1.53	
H ₂ C=C ₂ H	163	1.34	
HC≡CH	198	1.21	

表-2 炭素同素体の種類3)

結合の種類	配位数	炭素同素体
sp	2	カルビン(ポリイン,クムレン)
sp ²	3	グラファイト(六方晶 菱面体晶)
		フラーレン (C60, C70, バッキイチューブなど)
sp ³	- 4	ダイヤモンド(立方晶, 六方晶, 菱面体晶*)
		ダイヤモンド多形体 (6H, bc-8*など)
		ダイヤモンドライクカーボン (DLC) .i-カーボン
イオンまたは	6	単純立方晶*.β-スズ型*
金属的	8	体心立方晶*
	12	面心立方晶*、六方最密充填*
*実	表。	4 Ⅳ 佐 sp3 立 方 晶体の性質 6)

性質	ダイヤモンド	β-SiC	Si
格子定数(A)	3.567	4.358	5.430
密度 (g/cm ³)	3.515	3.216	2,328
熱膨張率(×10-%℃)	1.1	4.7	2.6
融点 (℃)	4000	2540	1420
バンドギャップ (eV)	5.45	3.0	1.1
キャリア移動度 (cm²/(V・S))			
電 子	2200	400	1500
ホール	1600	50	600
熱伝導率(W/(cm・K))	20	5	1.5
硬度 (kg/mm ²)	10000	3500	1000

What is the synthetic carbon!

※ 九州大学 Heat treatment of organic materials

	ΔH	Reactions		
1	+	Removals of water and VMs		
2	+	Dissociation and removals of light organics		
3	+	Dissociation and polymerization of organics		
4	+	Polycondensation of organics, dealkylation		
5	+	Coking		
6	_?	Dehydration and dehydrogenation, CO removal		
5~6	+	Removal of sp ³ bridged bonds		
6~7	+?	Completion of polycondensation of intra-cluster units (Dehydrogenation), Removal of alkyl groups, Removal of ultramicroporosity		

Heat treatment of organic materials

Carbon materials		 Graphite materials				
1000°C	1200°C	1600°C	2400°C	2800°C	3000°C	
 1	2	3	4		5	6

	ΔH	Reactions
1~2	- ?	Start of linkage with inter-clusters
2~3	- ?	Linkage with inter-clusters, Removal of edge phase, almost removal of microporosity
3~4	-	?
(4)~(5)	- ?	Construction of 3D structure maintaining domain structure, Complete removal of micro-porosity
5~6	- ?	Completion of graphitic structure with removal of domain structure, HOPG forming temperature

有機物の加熱による変化

温度や原料による人造炭素材料

構造 反応相 材料 熱処理 細孔 固相 クラスター 温度(°C) 液相 気体 気相 固体または液体 原料:石炭、ポリマー 石油、バイオマスなど 200 ラジカル 熱処理 熱分解 芳香族化 架橋 重縮合 500-クラスターの 炭素質材料 核形成 熱分解炭素 マイクロ細孔の 炭素材料 コーキング (コーティング 核形成 C/Cなど) 600 活性炭 繊維状 炭素 1000^{-1} ガラス状 ニードル ダイヤモンド 炭化 L。増加 またハード コークス 状炭素 炭素材料 炭素 マイクロ細孔の 炭素繊維 1500 減少 (高強度) L。増加 ガラス 2000^{-1} 炭素繊維 炭素 黒鉛 K.a(110) > (高弾性率) $L_{c}(112)$ C/C 電極 Li電池 増加 Lc(002) 人造黒鉛 化 3000 複合材 HOPG

10

From fossil fuel to functional carbons

炭素の基礎(黒鉛の分子構造)

炭素の基礎(黒鉛の結晶因子)

結晶面と面間隔の関係

炭素の基礎(黒鉛のXRDプロファイル)

16

人造炭素材料の構造理解

炭素の基礎(炭素の高次構造)

<u>ドメイン構造との連携</u>

(a) Non-Graphitizing (Isotopic)

炭素の基礎(易黒鉛化性炭素と難黒鉛化性炭素)20

Non-graphitizable

Carbon from phenol resin

Feature

- Non-graphitizable
- Ball shaped domain
- Domain \approx Micro-domain

Graphitizable

Feature

- Graphitizable
- Linear shaped domain
- Domain > Micro-domain

Domain of NGC has similar size and shape of micro-domain, whereas GC does larger and much linear shaped domain than that of NGC

What is the synthetic carbon!

ドメインモデル

先行研究

Fig. STM images of (a) OG5A, (c)OG7A, (e)OG10A, and (g) OG20A Pitch-based activated carbon fiber

マイクロドメイン構造モデルに基づいて、賦活度に応じた細孔構造を説明した。

N. Shiratori, et al., Langmuir, 22, 7631-7637 (2009)

炭素の基礎(ドメイン構造)

2. 気相,液相および固相炭素化

炭素化過程	原料(前駆体)	炭素材料	特徴	
	炭化水素ガス (空間中で分解)	カーポンブラック	微粒子, ストラクチャー(連鎖構造)	
気相炭素化	炭化水素ガス (基盤上に析出)	熱分解炭素	多様な組織 (基盤上に析出)	
	炭化水素ガス (金属触媒あり)	気相成長炭素繊維 カーポンナノファイバー	繊維状状態 多様なナノ組織	
	炭化水素ガス (触媒なし)	ダイヤモンド状炭素	薄片フィルム sp ³ 炭素, 非晶質構造	
	炭素蒸気	カーポンナノチューブ	チューブ状, 単層および多層構造	
	炭素蒸気	フラーレン	球状,分子性	
固相炭素化	植物,石炭,ピッチ	活性炭	高い多孔質吸着特性	
	フルフリルアルコール樹脂, フェノール樹脂, セルロース など	ガラス状炭素	非晶質構造,貝殻状破面 気体不透過性	
	ポリアクリロニトリル, ピッチ セルロース, フェノール樹脂	カーボンファイバー	繊維状形態, 高い機械特性	
	ポリイミドフィルム	カーポンフィルム 高配向黒鉛	フィルム状,広範な黒鉛化性	
液相炭素化	ピッチ, コールタール	コークス, メソフェーズ小 球体	多孔質塊, 球状粒子	
	ピッチ混錬コークス	多結晶黒鉛ブロック (高密度等方性黒鉛を含む)	広範な密度, 広範な配向性	

種々の炭素材料の炭素化過程, 前駆体, 特徴

炭素材の製造例

- 3. 液相炭素化:
- ・ 等方性ピッチおよび液相ピッチ
- ・ ニードルコークス

液相炭素化

- ・液相炭素化(Liquid phase carbonization): 液相を経由する炭素化...炭素化反応が液相中で進行するため、分子の移動や配向が起こり易い..熱溶融性の有機物前駆体を、常圧下300~500°C程度に熱処理して得られる生コークスのほとんどは易黒鉛化性炭素である..液相炭素化する前駆体としては、石油や石炭タールの精製残渣としての重質油やピッチ、ポリ塩化ビニル等の熱可塑性高分子、アセナフチレン、デカシクレンなどがある.これらの前駆体は一般には炭素化反応中に極めて高分子量の平面性芳香族化合物を生じ、それらを構成成分としてメソフェーズを生成する..メソフェーズの組織や発達の程度によって、高温処理後の炭素材料の黒鉛化度が支配される.そのため、この段階におけるメソフェーズの制御が重要で、前駆体の選択やフリーカーボンの除去、炭素化条件などが工夫されている.
- 縮合:

- 脱水素縮合(Dehydrogenative condensation):パラフィンの脱水素環化芳香族と芳香族化 合物の縮合は通常,脱水素を伴って進行する.これによって炭素化収率,軟化点が向上する. 熱的に加えて接触的,炭素化的な脱水素縮合も進行し,工学的にも応用されている.エアブ ローは酸化的脱水素縮合の代表例で,鋪装用アスファルトや活性炭素繊維や粒子の原料ピッ チ製造に応用されている.このほか,アルカリ金属,ヨウ素,遷移金属塩化物,酸化物等の脱 水素複合剤も知られている.

-非脱水素的縮合(Non-dehydrogenative condensation):分子量の小さい成分や重質油は, 縮合反応によって重質化されることにより炭素化性を変えることができるが,この際,水素を脱 離しない場合を非脱水素的縮合という.例えば,AICI3を用いるとその低温での縮重合促進効 果は、コークス収率を上げることからも明らかであるが,減圧残油の軟化点を比較的に低く押 さえることもできる.これは水素を脱離せずに芳香族の縮合が進み,縮合と同時にナフテン環 を形成することによると推定できる.HF/BF3は金属腐食性の超強酸であるが,回収の容易な 極めて強力な酸としてナフタレン等の種々の芳香族化合物を200~300°Cの温度で非脱水素 的縮合化を進め,高純度のメソフェーズピッチの直接合成に利用できる.

触媒による法構造物質の縮重合

quinoline

Catalytic condensation of aromatic hydrocarbon with HF/BF₃

Scheme of catalytic polymerization of quinoline and isoquinoline with AlCl₃

ピッチ(Pitch):木材,石炭などの乾留の際に得られる液状タール,オイルサンドから得 られるビチューメン,オイルシェールの乾留によって得られる油分,原油の蒸留による残 渣油,石油留分のクラッキングによって生成するタールなどを熱処理,重合して得られ る常温で固体状のものの総称.工業的には石炭系ピッチ,石油系ピッチが重要である. 最近ナフタレンなどの芳香族化合物を重合した合成ピッチも製造されるようになった. ピッチは化学的には無数の縮合多環芳香族化合物の混合物で,平均分子量は300~ 1000程度の範囲にある.350~450°C程度の温度で熱処理すると光学的異方性組織 (メソフェーズ)の炭素質液晶が発達する.メソフェーズの組織構造(テキスチャー)は コークス,炭素材料の特性をほぼ決定してしまうので,ピッチの化学構造,熱分解なら びに重合挙動を知っておくことはきわめて重要である.分子量,分子量分布ならびに NMR,IRから求められる化学構造指数(例えば芳香族炭素分率,縮合環数など),粘 度などが測定される.

ドッチ

<u>ピッチの高分子やオリゴマー等の有機化合物との違い</u>

- 1. 多環芳香族の混合体: 5000種以上の多環芳香族物質が混在
- 2. 軟化点が高くなるにつれ、溶媒に溶けない成分がある.
- 3. 炭素繊維前駆体ピッチなどの可溶性高軟化点ピッチは、ピッチの中で溶媒不溶成分と溶媒可溶成分が混在 → 溶媒成分の役割をする成分がある.
- 4. すでにある程度積層クラスター構造を形成している.
- 5. 軟化点以上になれば、溶媒成分の積層は解体され、溶質成分を分散させる. 液晶 ピッチは可溶状態でも積層クラスターをもつ.

等方性および液晶ピッチ

- 等方性ピッチ(Isotropic pitch):縮合芳香族化合物を主成分とする石炭系,石油系のタール ピッチ,ナフタレンのような化合物から合成されたピッチは,分子または分子の集団(ラメラ)が 無秩序に配向しているために偏光顕微鏡で観察しても光学的に等方性である.このようなピッ チを加熱処理すると光学的異方性を示すメソフェーズが生成する.
- メソフェーズピッチ(Mesophase pitch): メソフェーズを含むピッチ.メソフェーズは偏光顕微鏡により光学的異方性を示す組織として観察されることから、メソフェーズピッチは異方性ピッチとも言われる.異方性部分の分子配向に起因して、高温熱処理により容易に黒鉛化が進行する典型的な易黒鉛化性炭素で、重要な炭素原料の一つである.特に、繊維軸方向に沿って炭素網面が配向したピッチ系高弾性率炭素繊維の原料としての研究が進展した結果、メソフェーズピッチの調製や評価の技術が飛躍的に発展した.炭素繊維用メソフェーズピッチは、石炭系あるいは石油系タールピッチを適当な条件下で熱処理し、これに溶剤抽出、水素添加を組み合わせて調製される.超強酸を用いてナフタレンやメチルナフタレンなどを重縮合させる調製法も開発された.
- ニードルコークス(Needle coke):針状コークスと 同意語で、1940年代にアメリカで製造された石 油コークスがたまたま金属光沢を有し、外観上 細長く針状(Needle like)を呈していたことに由来 する.別名No.1コークスあるいはプレミアムコー クスと称され熱膨張係数(CTE)値が低く強い異 方性を有する点に特徴がある.顕微鏡観察によ ると配向繊維状組織(Fibrous texture)を示し、 流れ模様にそって炭素六角網面構造がよく発達 して黒鉛化し易い特性も有している

ニードルコークスの外観(a), 組織(b), 構造モ デル(c)(持田勲:炭素材の化学と工学, 朝倉 書店(1990)p.231.)

光学的等方性ピッチを熱処理する際,異方性ピッチ化される過程

Raw pitch Nucleation of MCMB

ation MB

Growth of MCMB Growth & Merging of MCMBs \rightarrow Mesophase

ピッチへの積層構造

球晶生成

球晶成長•合体

バルクメソフェース

液晶ピッチの分子構造

FCC-DO

aphthalene

anthracene

Models of mesophase constituent molecules

Typical mesogen units in various mesophase pitches

methylnaphthsleng

phonanthrene

(Mochida et al. Carbon 1990, 28, 311)

TOF-MS spectra of synthetic mesophase pitches

液晶ピッチの積層構造

Molecular Models

Spider Wedge Stacking of mesophase pitch (Zimmer et al. Advances in Liquid Crystal, New York, 1982, 5)

Change in Lc of mesophase pitch at higher temperature; (a) methylnaphthalene-derived pitch; (b) petroleum-derived mesophase pitch; (c); coal tar derived-mesophase pitch; (d) naphthalene-derived mesophase pitch; (e) anthracene-derived mesophase pitch (*Korai et al. Carbon, 1992, 30, 1019*)

Carbon Industry – Chain Industry

表-3 ピッチの特性値

種 類	用途	軟化点 固定炭素		比重 溶		溶剤分別		元素分析			
	/11 /2	(°C)	(wt%)		BI	QI	C	Н	N	S	
石油系	含浸用	170F	36.3	1.185	2.5	0	91.8	5.98	0.66	1.8	35
石油系	電極用	92	53.7	1.246	32.5	5.5	92.0	5.65	0.1	1.0	37
石油系	製鉄コークス用	215	60.0	1.25	56.0	21.5	85.0	5.95	1.01	7.95	33
石炭系	(ストレート品)	67	50.5	1.29	16.1	3.9	91.9	4.7	1.4	0.3	36
石炭系	電極用	86	55.1	1.31	31.2	5.1	92.8	4.5	1.4	0.2	36

表-1 光学組織の形状と寸法の分類

Optical texture	Abbreviation	Size (mm)
Isotropy	1	-
Anisotropic		
Spherical unit		
ultrafine mozaic	UMf	< 0.5
very fine mozaic	Mvf	0.5~1.0
fine mozaic	Mf	1.0~2.5
medium mozaic	Mm	2.5~5.0
coarse mozaic	Mm	5.0~10.0
small domain	SD	10~60
domain	D	>60
Elongated unit		
elogated mozaic	EM	10-20
flow	F	20~60
flow domain	FD	>60

図-2 炭素化反応の苛酷度と構成分子の粘度,平均分子量の変化

図-6 各種ビッチの軟化点と固定炭素の相関41)

表-1 生コークスの性状

额畅	揮発分	灰分	真比重	元素分析(wt%)				御 老	市
但我	(wt%)	(wt%)	(g/cm ³)	С	Н	N	S		
石油系レギュラーコークス	8.2	0.08	1.39	93.5	3.4	1.6	0.48	ディレート・コーカー	27
石油系ニードルコークス	7.6	0.05	1.39	93.8	3.3	1.1	0.73	7*12-1*3-2-	27
石油系高硫黄コークス	10.6	0.08	1.38	89.0	3.2	1.1	5.7	ディレート・コーカー	27
石油系高灰分コークス	16:1	1.22	1.35	92.0	4.2	1.3	0.36	-	27
石炭系コークス	7.8	0.11	1.41	94.6	2.8	0.8	0.29	ディレート・コーカー	27

表-2 か焼コークスの性状

植類	硫黄分 (wt%)	厌分 (wt%)	真比重 (g/cm ³)	CTE*) (×10-4/K)	文献
石油系レギュラーコークス	1.1	0.35	2.07	3.1	28
石油系ニードルコークス	0.6	_	2.12	1.1	28
石油系ニードルコークス	0.5	0.20	2.08	1.2	28
石油系ニードルコークス	0.2	0.10	2.12	1.1	28
石炭系スポンジコークス	0.3	0.2	2.00	3	30
石炭系ニードルコークス	0.3	0.09	2.11	1.2	31

*) 熱膨張計数

EOとCTの元素分析, 13C-NMRおよびTOF-Mass分析

Elemental analyses				¹³ C N	IMR an	alyses									
Raw C H _{U/O} N S			S		Aliphatia (%)		Aromatic (%)								
material	(wt%)	(wt%)	Π/ U	(wt%)	(wt%)		AII	phatic	(70)	Ca	r1,3	Ca	ar1,2		fa
EO	92.30	7.41	0.96	0.00	0.14		CH ₃	CH₂	C_{chain}	CH_{ar}	C_{ar3}	\mathbf{C}^{s}_{ar}	C_{ar2}	- U _{ar3} / U _{ar2}	
						EO	9.0	10.2	6.4	19.3	9.7	7.8	37.6	0.26	0.74
СТ	92.58	5.96	0.77	0.84	0.62	СТ	1.1	10.6	1.9	1.3	24.3	2.1	58.7	0.41	0.86

 ✓ CT has more heterogeneous atomic compounds than EO
✓ fa: 0.86

✓Mw: 200~500 (300~400)

<u>GC-AEDを用いたEOの環数分布</u>

Molecular	compositions	of raw	materials
-----------	--------------	--------	-----------

Ring number	EO
1-Ring	46.7
2-Ring	43.9
3-Ring	5.5
4–Ring	3.5
5-Ring	0.4
>5-Ring	0.0

GC-AED

- \checkmark EO: 90% of 1~2 six membered rings
- Many Alkyl Naphthalene

<u>GC-AEDを用いたCTの環数分布</u>

Ring compositions of CT

Ring number	NCO	СТ
1-Ring	46.7	0.0
2-Ring	43.9	31.3
3-Ring	5.5	27.3
4–Ring	3.5	22.2
5-Ring	0.4	5.2
>5-Ring	0.0	4.0

GC-AED

- \checkmark CT: 2~4 six membered rings
- $\checkmark\,$ Almost 2 and 3 membered rings

<u>2-MNのBromination-dehydrobromination反応</u>

<u>合成したピッチの分子量と分子構造</u>

TOF-MS

¹³C NMR

- C_4 . 22 33 ppm, methylene carbon (methylene
- C₅: 22–11 ppm, methyl carbon(CH₃)

fa: carbon aromaticity

持田勲、炭素材の化学と工学、1990、p60 Diaz C, Blanco CG. Energy & Fuels, 17,(2003) 907

<u>合成したピッチの代表的な分子構造</u>

メチレン架橋による重合機構

<u>Dehydrobromination/polycondensationの際の (a) Scheme of</u> <u>dehydrobromination/polycondensation; (b) Isothermal dehydrobromination kinetic</u> <u>curves; (c) Arrhenius plots of lnk and 1/T for the thermal dehydrobromination of M-Br.</u>

<u>NCBとNBの代表的な分子構造</u>

Characteristics of needle coke

=

Graphite electrode

Needle coke + Binder pitch Impregnation pitch

Prerequisite of Needle Coke

- 1. Low CTE
- 2. Low Puffing
- 3. High Strength of Grains
- 4. Good Wettability
- \Rightarrow

How to achieve above properties ?

Manufacturing Graphite Electrode

50

Flow of coal tar related materials

KYUSHU UNIVERSITY

重質油を用いたカーボンサークル

KYUSHU UNIVERSITY

Flow of coal tar related materials

Preparation of carbons

What is the most important for carbon manufacturing?

- Specific properties of target material.
- ex) Carbon fiber
- > Tensile strength: impurity, surface property, molecular orientation
- Modulus: molecular orientation, graphitization degree
- Elongation property: <u>selection of raw material</u>, heat treatment temperat ure
- > Thermal conductivity: graphitization degree

- How to achieve such properties?
- ex) Carbon fiber
- Tensile strength: low impurity, amorphous surface property, high molecular orientation
- Modulus: high molecular orientation, high graphitization degree
- Elongation property: precursor control, low temperature heat treatment
- Thermal conductivity: high graphitization degree

High performance pitch based carbon fibers: less than 50 ppm

Capacitor : less than 500 ppm

High performance needle coke : 500 ppm

Carbon medicines: less than 300 ppm?

Carbon anode for LIB: less than 100 ppm

58 Purification of raw and precursor materials

- Advanced functional carbons always require higher than certain level of purification.
- Kinds of impurities are very dependent to the target materials.
 - In the case of needle coke: Sulfur and nitrogen compounds are important impurities.
- The purification of functional carbons almost rely on the purity of raw and precursor materials.
- The optimized purification method is very dependent to the raw mat erials, size of manufacturing and production cost.
 - Pitch-epoxy : Centrifugation method
 - Needle coke : Solvent-non solvent method
 - FCC-DO: High temperature centrifugation (several times)
- To find out the optimized purification method of raw or precursor ma terials is most important key technology in the functional carbon pro ductions.

Method	Principle	Advantage	Disadvantage
① Filtering (Heat, Solvent)	Decreasing viscosity by heating or solution Mesh filtering of QI	Only QI Removal No heavy fraction removal	Large equipment X
② Centrifuging (Heat, Solvent)	Decreasing viscosity by heating or solution Centrifugal condensing of QI	Only QI Removal No heavy fraction removal	Large equipment X
③ Solvent - Precipitation	Mixing of miscible solvents Precipitation removal of QI		Low productivity
④ Non-solvent Precipitation	Mixing of non-miscible solvents Precipitation removal of QI	Large equipment OK	Heavy fraction removal

- It is relatively easy to remove QI in lab scale.
- QI removal in the industrial scale
 - > Very difficult to remove finely dispersed QI from large amount of viscous liquid
 - > Only success in Japan

Japan several ten thousands ~ hundreds tons/year scale

Stationary method

The case using the general solvent(unit : wt %)

	Sample	Toluene	n-Hexane	Temperature
A	Coal Tar 50	50	0	80°C (→ RT)
в	Coal Tar 44	44	12	80°C (→ RT)
C	Coal Tar 36	36	18	80°C (→ RT)
D	Coal Tar 32	32	36	80°C (→ RT)
E	Coal Tar 28	40	32	80°C (→ RT)
F	Coal Tar 9	81	10	80°C (→ RT)
G	Coal Tar 7	67	26	80°C (→ RT)

QI removal from CT

Solvent-Non-solvent method

- (1)CT is dissolved into solvent
- (2)QI is precipitated by the addition of nonsolvent
- (3) Pitch phased precipitate is removed.

Solid – liquid separation by decantation *Time & Temperature

Phases of precipitate (QI+?)

Phase changes of precipitates

	CT w%	Wash oil w%	Kerocene w%	Precipitate w%
1	10	80	10	
2	10	60	30	-
3	10	40	50	38.7
4	10	20	70	45.5
5	20	60	20	37.2
6	20	41	39	40.2
7	20	20	60	24.8
8	30	60	10	-
9	40	40	20	-
10	40	20	40	17.1
11	50	40	10	-
12	60	20	20	-

OILY ···No solid precipitate, difficult to separate SLURRY ···Easy to separate but large amount of precipitate

CRYSTAL ··· Difficult to separate

PITCH •••Small amount of precipitate, easy to separate

Adjustment of removal conditions

Changes of precipitate amounts of CT under various conditions

	СТ	Wash oil	Kerocene	Pr	ecipitate	(QI(%)
1	30	26	44	1	23.6	2.15
2	30	24	46	2	23.6	2.16
3	30	22	48	3	10.36	2.35
4	30	18	52	4	11.5	2.64
5	30	16	54	5	18.2	2.54
6	30	14	56	6	30.1	2.50

Easiness of decatation QI amount ≈ Precipitate amount_

Kind of solvent, Mixing ratio Temperature, and time

Understanding raw and precursor materials

- To select and design the target functional carbons, full understanding of raw and precursor materials are necessary.
- It is not still enough to understand the molecular structures of raw and precursor materials.
- It is strongly required that the novel analytical method to analyze the detailed molecular structures of raw and precursor materials.
- TOF-MASS, GC-GC (2D), GC-AED, etc.
- It is also strongly required that the novel analytical method to analyze the detailed impurity structures of raw and precursor materials.
- Chelated structures of Ni and V in DO materials, etc.

Properties of high performance binder matrials

65

Property	Required level
Softening point (Ring & Ball method) (°C)	80 -110
Density (25 °C)	1.28 – 1.32
Coking value (%)	55-65
Benzene Insoluble (%)	30 – 35
Quinoline Insoluble (%)	10 -16
C/H (Atomic ratio)	1.70 – 1.85
Temperature appearing 500 cP (°C)	150 – 180

⁶Some properties of binder and impregnation pitches

Solvent solubilities of impregnation and Binder pitches

TGA profiles of binder and impregnation pitches * Black line: Pristine, Red line: HI-TS fraction of IP and BP

HPLC analyses of binder and impregnation pitches

67

Novel method for quantitation of aromaticity Standard materials HPLC analysis GC-AED analysis

- B : Benzene (1 ring, Retention Time : 3.18min)
- N : Naphthalene (2 ring, Retention Time : 3.84min)
- P: Phenanthrene (3 ring, Retention Time: 4.77min)
- A : Anthracene (3 ring, Retention Time : 5.03min)
- Py : Pyrene (4 ring, Retention Time : 5.72min)
- Pe :Perylene(5 ring, Retention Time : 7.87min)

N : Naphthalene (Temperature : 194.8°C) A : Anthracene (Temperature : 289.0°C) Py : Pyrene (Temperature : 329.3°C) Pe : Perylene (Temperature : 407.6°C)

Analyses of CT

HS: almost 3 membered rings HI-TS: over 3 membered rings

HS: 2 – 4 membered rings TI-THFS: Over 4 membered rings

68

HPLC analyses of CTP

69

⁷Adjustment of molecular compositions of BP

Fig 5.1 調製ピッチにおける各溶媒を用いた溶媒溶解度図 (バインダーピッチ, CTP294-40Torr, CTP320-40Torr)

Fig 5.2 調製ピッチの N2雰囲気下における蒸留温度別 TG 分析

(バインダーピッチ, CTP294-40Torr, CTP320-40Torr)

Mesophase pitch based high performance carbon fiber

- Heat treatment temperature: over 2200°C
- Tensile Strength: over 2500MPa
- Young's Modulus: over 450GPa
- Elongation: less than 0.7%
- Thermal conductivity: over 200 W/mK
Mesophase Pitch

Intermediate to Metallurgical and Needle CokesPrecursor for Carbon Fiber

Molecular Recognition Controlled Syntheses

Nanoscopic Views

 Quantitative Recognition and Identification of Molecular Assembly
 Structural Hierarchy

Further Development : Functionality and Applications

73 **Preparation of Mesophase Pitch**

Raw Material	Before treatment and transferring to mesophase			
DO	De-ash \rightarrow Thermal Polycondensation \rightarrow Thermal Transferring to Mesophase \rightarrow Mesophase pitch			
Coal tar	De-ash \rightarrow Hydrogenation \rightarrow Thermal Polycondensation (Mesophase) \rightarrow Mesophase Pitch			
Naphthalene	Polycondensation (HF/BF ₃) \rightarrow Removal of light Matters \rightarrow Mesophase Pitch			

Isotropic pitch

Formation of mesophase

Growth of mesophase

Bulky mesophase

MPCF Production Processes

Li-ion電池のマーケットと特性

Li-ion電池用負極って何?

Li metal anode: High reducing agent, Almost kinds of electrolyte would be reduced with Li-ion and nucleated as dendrite metal crystal \Rightarrow Moli energy (Canada): NTT mobile phone (shortaccident in Tokyo), 1989

Resin derived hard carbon was first selected as a safe anode for LIB: SONY. 1991

■ Synthetic graphite (1989, Ashahi Kasei, Yoshida) (1993, Panasonic, C_eLi, 372 mAh/g) ⇒ Natural Graphite)

Safety: $Li^+ \rightleftharpoons Li^+$

C₆Li: Low potential similar with Li^o

Carbon material: Chemically and Physically stable, Electrically and thermally conductive

Anodic Materials for Li-ion 2nd Batteries

Li-ion電池用負極材の種類と負極原理?

- Graphite: Mainly Li+ intercalation & deintercalation
- Hard carbon: Mainly Li+ insertion & desertion (Doping & dedoping)
- Soft carbon: Mixing of intercalation and doping?

	Precursor	Advantages	Disadvantages
Graphite (over 2800°C)	Natural / Artificial graphite MCMB, Needle cokes VGCF	Low discharge potential ($\approx 0.2V$) Long cycle life	Low discharge capacity (372 mAh/g) Poor rate performance High cost
Soft Carbon Graphitizable carbon (600~800°C)	MCMB Meso phase pitch Green cokes	High capacity (700~1000mAh/g) Low cost	High discharge potential (≈ 1.0V) High irreversible capacity Poor cycle stability
Hard Carbon Non-graphitizable carbon (1000~1400°C)	Thermosetting polymer Glassy carbon, Coal Organic material Stabilized isotropic pitch	High capacity (400~700mAh/g) High rate performance Low discharge potential (≈ 0.1 V) Low cost	Large irreversible capacity

Preparations of anodic carbons of Li-ion battery

Price of carbon anodes: Almost no room for technical modifications!

- Natural graphite: \$ 3-5/Kg, Synthetic graphite: \$ 3-10/Kg
- Hard carbon: \$ 3-5 Kg
- Soft carbon: \$ 3-5 Kg
- Conductive material: \$ 10-20/Kg

4. 気相炭素化:

• 炭素ナノ繊維の調製

Nano-carbons

Fullerene

Zero dimension Basal surface Nano-size

Graphene

Two dimension Basal surface Nano-size

CNT

One dimension Basal surface Nano-size

CNF

One dimension Various surfaces and structures Nano-size High price Very limited application Mass-production (Frontier Carbon Tech.)

Somewhat high price Broad application Mass-production

Relatively high price Patent problems Mass-production (Showa Denko) Limited application

Relatively low price Patent problems Mass-production (Mitsubishi Materials) Limited applications

Selective Preparation of CNFs

Pt, PtRu, Pd, Au nanochain

Structural variety of CNFs

Typical classification of CNF Structure

- graphene ((002) layers) alignment to the fiber axis, TEM observation

< Simple cases of CNF structure >

•However, complicated structure is often found.

•The morphological diversity confirmed simply by SEM observation cannot be neglected, considering possibly their different physical properties.

Various cross sections of CNFs

Structural varieties of CNFs

Preparation of various CNFs that are best for the special applications
 Lower price

3) Proper method for the mass production

84

Control of Graphitic Properties of TCNFs

Highly graphitic CNFs

- **CNF of similar graphitic properties with Natural Graphite**
- CNT usually shows low graphitic properties
- Conductive materials or supports for heterogeneous catalysts

GPCNF-N			Preparation conditions	Clooz (nm)	Lc(002) (nm)
	HONE	PCNF	Fe catalyst, 620, CO/H2 : 4/1	0,3365	72
		G-PCNF	G-PCNF 2800°C heat treatment of PCNF		83
		G-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs	0,3362	152
GPCNF		GG-PCNF-N	2800°C heat treatment of GPCNFN	0,3362	106
		BA-G-PCNF	Boric acid added heat treatment of PCNF	0.3359	115
G-PCNF-N		BA-GG-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs Boric acid added heat treatment	0.3357	377
	B黒鉛化	BC-G-PCNF	Boron carbide added heat treatment of PCNF	0.3354	178
BA-GGPCNF-N		BC-GG-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs Boron carbide added heat treatment	0.3354	167

N-doped CNFs

Preparation of N-doped CNFs

A. Direct Synthesis of Carbon Nanofibers with Nitrogen (the method of this study)

- B. Deposition of Nitrogen Components on Carbon Nanofibers (Post-synthesis)
 - Using Carbon Sources Containing Corresponding Heteroatoms
 - Mixing General Carbon Sources with a Nitrogen Source (NH3)

TEM & SEM of SiOx NFs

Surfaces of PCNF

According to the graphitization degree, we found some difference at edge plane by TEM analysis

Various CNF composites

Magnifying the functions of basic materials: Silica, Alumina, Si, TiO₂, Magnetites

Some problems of CNFs

- 1. Patents : Relatively free but some application patents should be considered.
- 2. Price : ~10~200 \$ /kg
 - Effective process for mass-production
- 3. Dimension & Uniformity control
 - Diameter
 - Surface control; edge / functional groups
 - Linearity
 - Crystallinity, surface area
- 4. Useful skills : Purification, Dispersion

Objective of this study

Preparation (Fixed Bed Method)

Catalyst : Transition metals, Their alloys or supported catalyst Catalyst preparation method : co-precipitation

1) Best, R. J. and Russell, W. W., J. Amer. Soc. 76, 838(1954)

2) Sinfelt, J. H., Carter, J. L., and Yates, D. J. C., J. Catal. 24, 283(1972)

Reduction : $H_2/He(1/9, 200sccm//4.5 cm diameter tubular furnace, 2h$ Reaction : CO/H_2 (4/1 & 1/4v/v%), 200 sccm// 4.5 cm diameter tubular furnace Reaction Time & temperature : 1 h, 540 ~ 675 °C

Mass Production of CNFs

Horizon type Capacity:several grams

> Capacity:H-, P-CNF 100g/1batch T-CNF 20g/1batch

Scale up Vertical type

Scale up Vertical type Pressure

Discussion for growth processes

Catalysts for CNF Preparation

- Mono-metal
 - Fe, Co, Ni
 - Fe, Co, Ni / Supports
- Support: Alumina, Silica >>> MgO
- Bimetallic Catalyst
 - Fe, Co, Ni / Fe, Ni, Mn, Cu, .../Supports
- Trimetallic Catalyst
 - Fe, Co, Ni / Fe, Ni, Cu, Mn / Cr, Al,
 - .../Supports

Functions of Second or Third Metals ?

Tri Metallic Catalysts

□ 연구결과 수율, 섬경, 섬유의 구조 등에 영향을 줄 수 있는 Cr, Mn, Al 등의 새로운 보조촉매 발굴

1. Co 주촉매에 대한 보조촉매의 효과

Cr 보조촉매는 낮은 합성온도에서 높은 촉매수율을 보이며, 합성온도가 낮아짐에 따라 Herringbone 구조의 섬유가 합성됨.
Mn 및 AI 보조촉매는 높은 합성온도에서 높은 촉매수율을 보이며, 대부분 Tubular 구조의 섬유가 합성됨.

2. Fe 주촉매에 대한 보조촉매의 효과 - Cr 및 AI 보조촉매 모두 합성온도가 높을수록 촉매수율이 증가하는 경향을 보이며 Tubular 구조의 섬유가 합성됨. - Cr 보조촉매의 경우에는 촉매수율이 매우 낮으나 반면 겉보기밀도가 매우 낮은 섬유가 합성됨. - Cr 및 Mo 보조촉매를 같이 사용할 경우에는 30배 이상의 매우 높은 촉매수율을 얻을 수 있음.

3. FeNiCoMg 촉매

- 최대섬경 120nm 정도의 매우 굵은 Tubular 섬유를 합성할 수 있는 촉매시스템.

- Ni과 Co의 함량이 각각 0.5로 동일한 경우에 가장 높은 촉매수율 및 가장 균일한 섬유를 얻을 수 있음.

98

Tri Metallic Catalysts

* 모든 CNF의 합성온도는 700℃임.

(Co:Ni:Cr:Mg=4:3:1:2, Fe:Ni:Mg=1:4:5 촉매는 600℃에서 합성한 결과임)

□ 연구결과 경제적으로 저렴한 C_3H_8 가스를 이용하여 C_2H_4 가스 보다 다소 높은 온도에서 CNF를 합성하였음

1. 주촉매에 대한 보조촉매의 효과 - Cr 보조촉매는 낮은 합성온도에서 높은 촉매수율을 보이며, Mn 및 AI 보조촉매는 높은 합성온도에서 높은 촉매수율을 보임. - 거의 모든 촉매조성에서 Tubular 구조의 섬유가 합성됨.

2. FeNiCoMg 촉매

- C₂H₄ 가스를 이용하여 합성했을 경우와는 전혀 다른 소재가 얻어짐

- 50nm 정도의 섬유도 관찰되었으나 거의 대부분이 섬유형태가 아닌 카본덩어리였으며 겉보기밀도 또한 매우 높은 편임.

3. 향후 연구 방향

- 합성 후 배출되는 가스의 성분을 분석할 필요가 있음 → CH₄, C_2H_2 , C_2H_4 등의 가스가 배출될 경우 이를 분리 수집하면 다른 CNF 소재의 합성에 이용가능할 것으로 예상됨.

- Ni을 주촉매로 이용할 경우 고온에서 Herringbone 구조의 CNF를 합성할 수 있을 것으로 예상됨.

- C₃H₈ 가스를 이용한 CNF 합성에서의 반응 메커니즘 연구.

Standard CNFs

Sample #	SEM	ТЕМ	Properties	Applications	Etc.
KNF-SPR Platelet Nano-rod		<u>5 M</u>	Platelet high grapht. deg. 80 ~ 400 nm, SA 90 m ² /g d ₀₀₂ 3.36Å, Lc(002) 30 nm	電池材料, 触媒担 体, 触媒担体 例) 高活性水素化 触媒Ru/PCNF	70 g/日
KNF-SH Herring- bone	NDME SEI 30.87 350.000 100mm WD 7 6mm	5 mm	Herringbone high surface area 70 ~ 500 nm, SA 150 m ² /g d ₀₀₂ 3.45Å, Lc(002) 3 nm	複合材料,ガス貯 蔵,吸着剤,触媒担 体,FED 例)DMFC用PtRu触 媒担体	100 g/日
KNF-ST Tubular 高黒鉛化 性		<u>B tim</u>	Tubular thin walls, open tips high grapht.deg. 20 ~ 50 nm, SA 90 m ² /g d ₀₀₂ 3.37Å, Lc(002) 13 nm	複合材料,吸着剤, 触媒担体,触媒	20 g/日
KNF-FM Tubular 小繊径	NOME 181 3/0.V X50.000 [100 HT] WD 8.8mm	10 nm	tubular, hollow 5~15 nm, 4 -7 walls	複合材料、触媒担 体、FED	20 g/日

CNF (Small & Middle Diameters)

Sample #	SEM	TEM	Properties	Applications	Product
KNF-CM 小繊径 高分散	10 10 10 10 10 10 10 10 10 10 10 10 10 1		Herringbone, hollow 7 ~ 20 nm	複合材料、吸着 剤、 触媒担体、FED	20-30 g/日
KNF-CC 小繊径	12 10 1 Jan	10 mm	Herringbone 7 ~ 15 nm	複合材料、吸着 剤、 触媒担体、FED	15-20 g/日
KNF-NM 中繊径			Herringbone 10~60 nm (30~40)	複合材料、吸着 剤、 触媒担体	50-70 g/日
KNF-NF 中繊径 直線性		<u>5 mm</u>	Herringbone 20 ~ 50 nm Straightness	複合材料、吸着 剤、 触媒担体	50-70g/日

Structural Units of CNFs

		Platelet CNF		Herringbone CNF		Tubular CNF	
		Nano-Rod	Nano-Plate	Nano-Rod	Nano-Plate	Nano-Rod	Nano-Plate
images	As-prepared	-20.0 -20.0 0 10.0 20.0 20.0 .0		axis 50 50 50 50 50 50 50 50 50 50 50 50 50	axis 25.0 0 25.0 90.8 10 10 10 10 10 10 10 10 10 10 10 10 10 1	40.0 30.0 20.0 10.0 20.0 30.0 40.0 0 10.0 20.0 30.0 40.0	
STM	Graphitize				axis 25.0 50.0 25.0 50.0 50.0 50.0 50.0 50.0	axis 35.0 25.0 50.0 15.0	
-	INIOGEIS	axis	axis	axis	axis	▲ axis	axis

STM images of MWCNTs; Nano-rod bundle type 103

Structural units and their periodicity in carbon nanotubes, Long, D., An, B., Yokogawa, K., Ling, L., Miyawaki, J., Mochida, I., Yoon, S.-H., *Small* 6 (22), pp. 2526-2529 (2010).

5. 固相炭素化

バイオマスを用いたLi-ion電池負
 極材の調製

Hard carbon from Mangrove tree – the effect of preheat treatment on its electrochemical properties of Li-ion battery

✓Objective

Development of biomass derived cheap hard carbon with relative high 1^{st} cycle CE

✓ Contents

 Investigation of preheat treatment effect on the 1st cycle Coulombic efficiency in the preparation of hard carbon using biomass as raw material

✤ Yu-Jin Han, et al., IMPRESS, 2013, 3, 571.

"Influence of preparation conditions of biochar from raw biomass on initial Coulombic efficiency of biomass derived hard carbon in Li-ion batteries"

From Biomass Char

> Preparation of hard carbon from Mangrove char

 Charge-discharge properties

• Rate performance of biomass derived hard carbon

* T. Liu, et al., Electrochimica Acta, 2010, 55, 1696.

Status and distribution of mangrove forests of the world107

< C. Giri et al., Global Ecology and Biogeography 20 (2011) 154 >

➢ Total area of mangrove : 137,760 km² (2000年)

- Continent : Asia (42%), Africa (20%), North and Central America (15%), Oceania (12%), South Africa (11%)
- Country : Indonesia (22.6%), Australia (7.1%), Brazil (7.0%), Mexico (5.4%)
- Price of mangrove charcoal : US dollar 0.4-0.5/kg (Deal Indonesia CV) Price of natural graphite for battery : US dollar 0.8-2.0/ kg (Qingdao Caifeng Co. Ltd.)
From Green Tree

Development of cheap hard carbon

- Investigation of structural effect of hard carbon on the electrochemical properties.
- > Optimization of preheat treatment condition for hard carbon preparation

Preheat treatment of Mangrove tree

Yield of 1st HT at 800°C

Cha-discha properties of hard carbons

• Preparation yield and 1^{st} cycle CE were improved through pr eheat treatment \Rightarrow PHT is necessary

Preparation of hard carbon and its Li-ion charge models 110

Preparation of hard carbon

- Preheat treatment
 - Temp: 450、 500、 550、 600°C
 - Time: 1~49 days
 - Presuure: 0.2、0.4、0.7 MPa

> Preparation of hard carbon

Charcoal Milling less than 45 μm

Carbonization 1st HT: 800°C、30 min、Ar 2nd HT: 1000°C、1h、Vacuum

Evaluation of electrochemical property Charge;(CC/CV) : 30 mA/g、0.0~1.5 V、 To 3 mA/g Discharge (CC): 30 mA/g、0.0~1.5 V

Site II Site II

* Chul Wan Park, et al., *Carbon*, 2000, **38**, 995.

<u>Site I</u> (Potential range: 0.0-0.1 V) 1000-1200°C heat treatment: Removal of heterogeneo us atoms \rightarrow formation of storing sites <u>Site II</u> (Potential range: 0.1-0.9 V, 1.3-1.5 V) Between graphene sheets

<u>Site III</u> (Potential range: 0.9 - 1.3 V) Distortion of graphene sheet clusters

Li-ion storing sites

Effect of pretreatment on the electrochemical properties

Discharge capacities

• Discharge capacity according to potential

Samples	Total (0.0∼ 1.5 V)	<mark>Discharg</mark> 領域 1 (0.0~ 0.1 V)	e capacity 領域 2 (0.1~ 0.9 V)	(mAh g ⁻¹) 領域 3 (0.9~ 1.3 V)	領域 4 (1.3 ~ 1.5 V)
HC-T450	314	100	173	37	4
HC -T500	396	163	183	44	6
HC -T550	368	139	181	43	5
HC -T600	353	130	176	41	6

•Elemental analysis

		Atomic ratios (wt%)					Atomic ratios (%)	
Samples	С	Н	Ν	O _{diff.}	Ash	H/C	O/C	
HC-T450	92.25	0.25	0.60	3.75	3.15	3.25	3.05	
HC -T500	93.35	0.31	0.43	4.39	1.52	3.99	3.53	
HC -T550	92.50	0.25	0.23	2.95	4.07	3.24	2.39	
HC -T600	93.38	0.25	0.28	2.80	3.29	3.21	2.25	

Pressure effect on the electrochemical properties

Discharge capacities

• Discharge capacity according to potential

Samples	Total (0.0∼ 1.5 V)	Discharge capacity (mAh g ⁻¹) 領域 1 領域 2 領域 3 領域 4 (0.0~ (0.1~ (0.9~ (1.3~ 0.1 V) 0.0 V) 1.3 V) 1.5 V)					
HC-P0.2	352	141	167	41	3		
HC-P0.4	383	154	179	43	7		
HC-P0.7	394	171	178	38	7		

•Elemental analysis

		Atomic	c ratios	Atomic ratios (%)			
Samples	С	Н	Ν	O _{diff.}	Ash	H/C	O/C
HC-P0.2	89.70	0.68	0.72	7.65	1.21	9.10	6.40
HC-P0.4	90.58	0.68	0.49	7.47	0.74	9.01	6.19
HC-P0.7	93.11	0.30	0.50	3.97	2.13	3.87	3.20

Effect of pretreatment time on the electrochemical properties ¹¹³

Discharge properies

 Discharge capacity according to potential 									
Discharge capacity (mAh g ⁻¹)									
Samples	Total 領域 1		領域 2	領地	或 3	領域 4			
Samples	(0.0 V	(0.0	0 V	(0.1 V	(0.9	9 V	(1.3 V		
	-1.5 V)	-0.1	V)	-0.9 V)	-1.3	8 V)	-1.5 V)		
HC-D3	396	10	53	183	4	4	6		
HC -D7	393	17	70	177	4	1	6		
HC -D29	402	17	74	180	4	1	7		
HC -D39	417	18	88	181	4	2	6		
HC -D49	366	1:	153		4	1	5		
•Elemen	•Elemental analysis								
Atomic ratios (wt%) Atomic r						ic ratios (%)			
Samples	С	Н	Ν	$\mathbf{O}_{\mathrm{diff.}}$	Ash	H/C	O/C		
HC-D3	93.35	0.42	0.51	3.34	2.34	5.40	2.68		
HC-D7	92.91	0.46	0.63	2.99	3.01	5.94	2.41		
HC-D29	93.30	0.20	0.44	3.53	2.53	2.57	2.84		
HC-D39	93.07	0.14	0.26	2.74	3.79	1.81	2.21		
HC-D49	92.90	0.10	0.39	2.61	4.00	1.29	2.11		
	水素と酸素の含有量が減少								

What is the factor to determine 1st cycle CE?

Structure control of hard carbon in the preparation step 115

Summary

1st cycle CE of hard carbon derived from Mangrove tree was improved through the optimization of preheat treatment conditions.

- Preheat treatment is closely related to the distribution of ultra micropores which might be related to the 1st cycle CE of hard carbon.
- Preheat treatment conditions of 500°C under 0.7 Mpa for 39 days can afford the cheap hard carbon which has discharge capacity of 417 mAh g⁻¹ with 80.5% of 1st cycle CE.
 - Hydrogen and oxygen amounts and UMP distribution might be important factors to determine the electrochemical properties of hard carbon.

 人造黒鉛材には易黒鉛化性炭素と難黒鉛化性炭素がある.
 難黒鉛化性と易黒鉛化性炭素は積層単位の大きさの違いからドメインの 構造が異なる.

まとめ

- 2. 炭素材は気相,液相,固相炭素化で製造される.95%以上の人造黒鉛は 液相炭素化で製造される.
- 3. ナノ炭素中, フラーレン, CNTおよびCNFは気相炭素化で合成される. 一部易黒鉛化性炭素(VGCF, HOPG)は気相炭素化で製造される.
- 4. 易黒鉛化性炭素材は主に液相炭素化によって製造される.
- 5. バイオマスおよび熱硬化性樹脂を用いた炭素材は固相炭素化で製造される.

高分子を前駆体としたPAN系炭素繊維およびナノ炭素ナノ繊維は固相炭 素化で製造される.

ー部高分子を原料とした高熱伝導性炭素フィルムは固相炭素化で製造される.

- ピッチは、<u>木材、石炭などの乾留の際に得られる液状タール、オイルサンドから得られるビ</u> <u>チューメン、オイルシェールの乾留によって得られる油分、原油の蒸留による残渣油、石油留</u> <u>分のクラッキング</u>によって生成する<u>タールなどを熱処理、重合して得られる常温で</u>固体状のも のの総称。
- 工業的には石炭の乾留の際生成される石炭系ピッチ(Coal tar pitch)と石油の蒸留の残渣か ら製造できる石油系ピッチ(Petroleum pitch)が重要. 最近は, ナフタレンなどの芳香族化合物を触媒重合した合成ピッチも製造されるようになった.
- ピッチは、化学的には<u>無数の縮合多環芳香族化合物の混合物</u>であり、<u>平均分子量は300~</u>
 <u>1000程度の範囲の混合物</u>ある、こうしたピッチは通常は<u>光学的に等方性</u>である
- こうした等方性ピッチを<u>350~450°C程度の温度で熱処理すると光学的異方性組織(メソフェーズ)の炭素質液晶が発達</u>
- メゾフェースピッチのテキスチャーは、これを前駆体と用いて製造されるコークス等の機能性 炭素材の化学・物理的特性をほぼ決定してしまうので、メゾフェースピッチ合成の際、原料の 化学構造、熱処理の際の熱分解ならびに重合挙動をよく知っておくことはきわめて重要. 液晶 ピッチはネマティック液晶。
- 芳香族多環縮合構造のプレナー分子が積層され、メゾーゲン単位を高温熱処理過程で形成 した後、こうしたメゾーゲン単位の濃度が増加することに従って球晶が生成、その後生成した 球晶の合体によって100%の光学的異方性組織を持つメゾフェースピッチが形成
- 液晶ピッチは、石炭の熱分解課程で最初発見された際は不溶のものと認識されたが、<u>可溶・</u> 可融性が見つけられ、高性能ピッチ系炭素繊維の前駆体として利用。

重質油又は石炭残渣を用いた炭素材の製造模式図

