

先端炭素材の調製と応用 II

- 1. 炭素ナノ繊維(Carbon nanofiber;CNF)の合成と構造
- 2. CNFの応用

九州大学先導物質化学研究所、教授

2013年9月27日

Characteristics of CNFs

Unique Properties Problems

Carbon nanofiber: CNF

Fullerene

Zero dimension Basal surface Nano-size High price Very limited application Mass-production (Frontier Carbon)

CNT

One dimension Basal surface Nano-size Relatively high price Patent problems Mass-production Limited application

Relatively low price Patent problems Mass-production Various applications Large diameter

CNF

One dimension Various surfaces and structures Nano-size

Structural variety of CNFs

Typical classification of CNF Structure

- graphene ((002) layers) alignment to the fiber axis, TEM observation

< Simple cases of CNF structure >

•However, complicated structure is often found.

•The morphological diversity confirmed simply by SEM observation cannot be neglected, considering possibly their different physical properties.

Various cross sections of CNFs

Surface of Platelet CNF

Surface of Platelet CNT

Surface of carbon blacks

Control of Graphitic Properties of TCNFs

• SEM of CBF fibers with SA around 300 m²/g: small fibrils, fibril aggregate, and rough surface one like activated one.

OKU XIA

Some problems of CNFs

- 1. Patents : Relatively free but some application patents should be considered.
- 2. Price : ~10~200 \$ /kg
 - Effective process for mass-production
- 3. Dimension & Uniformity control
 - Diameter
 - Surface control; edge / functional groups
 - Linearity
 - Crystallinity, surface area
- 4. Useful skills : Purification, Dispersion

Objective of this study

Backgrounds of Objectives: Functional revolution of CNFs Based on the Carbon Nanotechnology

Synthesis of CNF

CNFs CNFs related syntheses

Selective Preparation of CNFs

Preparation (Fixed Bed Method)

Catalyst : Transition metals, Their alloys or supported catalyst Catalyst preparation method : co-precipitation

Best, R. J. and Russell, W. W., J. Amer. Soc. 76, 838(1954)
Sinfelt, J. H., Carter, J. L., and Yates, D. J. C., J. Catal. 24, 283(1972)

Reduction : H₂/He(1/9, 200sccm//4.5 cm diameter tubular furnace, 2h Reaction : CO/H₂ (4/1 & 1/4v/v%), 200 sccm// 4.5 cm diameter tubular furnace Reaction Time & temperature : 1 h, 540 ~ 675 °C

Catalysts for CNF Preparation

- Mono-metal
 - Fe, Co, Ni
 - Fe, Co, Ni / Supports
- Support: Alumina, Silica >>> MgO
- Bimetallic Catalyst
 - Fe, Co, Ni / Fe, Ni, Mn, Cu, .../Supports
- Trimetallic Catalyst
 - Fe, Co, Ni / Fe, Ni, Cu, Mn / Cr, Al,
 - .../Supports

Functions of Second or Third Metals ?

Tri Metallic Catalysts

Tri Metallic Catalysts

(Co:Ni:Cr:Mg=4:3:1:2, Fe:Ni:Mg=1:4:5 촉매는 600℃에서 합성한 결과임)

Standard CNFs

Sample #	SEM	TEM	Properties	Applications	Etc.
KNF-SPR Platelet Nano-rod			Platelet high grapht. deg. 80 ~ 400 nm, SA 90 m ² /g d ₀₀₂ 3.36Å, Lc(002) 30 nm	電池材料,触媒担 体,触媒担体 例) 高活性水素化 触媒Ru/PCNF	70 g/ 日
KNF-SH Herring- bone	NONE SE 364V X50.000 100m WD 7.4mm	<u>5 nm</u>	Herringbone high surface area 70 ~ 500 nm, SA 150 m ² /g d ₀₀₂ 3.45Å, Lc(002) 3 nm	複合材料, ガス貯 蔵, 吸着剤,触媒担 体, FED 例)DMFC用PtRu触 媒担体	100 g/ 日
KNF-ST Tubular 高黒鉛化 性	18211Y 19KU - 1980 3mm	<u>S nm</u>	Tubular thin walls, open tips high grapht.deg. 20 ~ 50 nm, SA 90 m ² /g d ₀₀₂ 3.37Å, Lc(002) 13 nm	複合材料,吸着剤, 触媒担体,触媒	20 g/日
KNF-FM Tubular 小繊径	NOME SEI JANY X50000 100mm WD 8.2mm	10 mm	tubular, hollow 5~15 nm, 4 -7 walls	複合材料、触媒担 体、FED	20 g/日

CNF (Small & Middle Diameters)

Sample #	SEM	TEM	Properties	Applications	Product
KNF-CM 小繊径 高分散	10 E 10.64 Y 2000 Tokin WD Jama		Herringbone, hollow 7 ~ 20 nm	複合材料、吸着 剤、 触媒担体、FED	20-30 g/ 日
KNF-CC 小繊径	YU EI 10AV X3000 100m W3.28mm	10 mm	<mark>Herringbone</mark> 7 ~ 15 nm	複合材料、吸着 剤、 触媒担体、FED	15-20 g/ 日
KNF-NM 中繊径	NNE EE 364/ 20000 100m WD 2mm	<u>10 nm</u>	Herringbone 10~60 nm (30~40)	複合材料、吸着 剤、 触媒担体	50-70 g/日
KNF-NF 中繊径 直線性	NNE EI 3.04/ Услов 100m WD 8.0mm	<u>5 mm</u>	<mark>Herringbone</mark> 20 ~ 50 nm Straightness	複合材料、吸着 剤、 触媒担体	50-70g/日

Highly graphitic CNFs

- **CNF of similar graphitic properties with Natural Graphite**
- CNT usually shows low graphitic properties
- Conductive materials or supports for heterogeneous catalysts

GPCNF-N			Preparation conditions	d ₀₀₂ (nm)	Lc(002) (nm)
DONE		PCNF	Fe catalyst, 620, CO/H2 : 4/1	0.3365	72
		G-PCNF	2800°C heat treatment of PCNF	0.3364	83
黒鉛化		G-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs	0.3362	152
The second secon					
GPCNF		GG-PCNF-N	2800°C heat treatment of GPCNFN	0.3362	106
	硝酸処理	BA-G-PCNF	Boric acid added heat treatment of PCNF	0.3359	115
G-PCNF-N		BA-GG-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs Boric acid added heat treatment	0.3357	377
	B黒鉛化	BC-G-PCNF	Boron carbide added heat treatment of PCNF	0.3354	178
BA-GGPCNF-N		BC-GG-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs Boron carbide added heat treatment	0.3354	167

Surfaces of PCNF

According to the graphitization degree, we found some difference at edge plane by TEM analysis

N-doped CNFs

Preparation of N-doped CNFs

A. Direct Synthesis of Carbon Nanofibers with Nitrogen (the method of this study)

- B. Deposition of Nitrogen Components on Carbon Nanofibers (Post-synthesis)
 - Using Carbon Sources Containing Corresponding Heteroatoms
 - Mixing General Carbon Sources with a Nitrogen Source (NH3)

Nano-Chains Synthesis of Magnetite Nanoparticle-Chain

- Syn

Ref.) S.Y. Lim, et al. Carbon 2006: International Conference on Carbon, Robert Gordon College, Scotland (2006)

90

80

0.8

1.0

XRD

Schematic Procedure of SiO2 NF

- Synthesis of SiOx Nano-fibers Using CNF as a template

TEM & SEM of SiOx NFs

Various SiOx NFs

TEM of SiOx-NF using PCNF

TEM of SiOx-NF using TCNF

SA and PSD of SiOx NFs

Surface Area and Pore Size Distribution depending on the synthesis template

- •PS in Toluene
- •PS/CNF 1/5 (w/w)

β-SiC NF

Structure model of platelet nano SiC

Layer spacing of platelet SiC: 0.225nm observed under TEM

0.253nm from XRD data according to Bragg equation

Nano functional composites

Various CNF composites

Magnifying the functions of basic materials: Silica, Alumina, Si, TiO₂, Magnetites

Silica - CNF Composites

Additive to Tire

Bad compatibility to rubber

CNF-silica composite to solve – Improvement of compatibility

SEI 10.0kV X100,000 100nm V

WD 7.8mm

Mass Production of CNFs

Horizon type Capacity:several grams

> Capacity:H-, P-CNF 100g/1batch T-CNF 20g/1batch

Scale up Vertical type

Scale up Vertical type Pressure

L

Capacity: 500g/day

Structure of CNF

Old structural models of CNFs

(Rodriguez, N.M. 1993. J. Mater. Res. 8: 3233)

Platelet 炭素ナノ繊維 Herringbone 炭素ナノ繊維 Tubular 炭素ナノ繊維

Graphitic cones in palladium catalysed carbon nanofibres: 分子 → ナノ繊維 *Chemical Physics Letters, Volume 343, Issues 3–4, 3 August 2001, Pages 241–250* H. Terrones, T. Hayashi, M. Muñoz–Navia, M. Terrones, Y. A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes–Dávila, R. Escudero, M. S. Dresselhaus and M. Endo

カルベール[®](カーボンナノチューブ) Carbere® (Carbon Nano Tube)

■カルベール[®]とは カルベールは超微粒子の金属触媒を核 として炭化水素を気相成長させる事によ って得られるカーボンナノチューブです。

http://www.gsi.co.jp/seihin/hightech/carbere.html39

Primary Structures of Various CNFs

⇒ Various structures and surfaces of CNFs are determined by the arrangements of primary structural units

SEM of PCNF, stabilized PCNF and PACNF

PCNF (starting material)

> 270°C (0.5°C / min)

Stabilized PCNF

600°C in He or steam activation

PACNF

200nm

Assembly of 1.8nm~3.6nm thin film

Nano particle assembly structure

Mesoporous CNFs

CNFへのPt-Ru触媒担持

ACF上に成長させたCNF構造

新チャレンジPAN系CNF構造

生成直後は不電 導性膜を持つが、 炭素化によって電 導性のナノ粒子構 造になる。

4Z

解析

新しいチャレンジ (新CNF構造の発見、新合 成方法の開発)

Structural Model of TCNF

Separation of structural unit (Nano-platelet)

Using oxidation and exfoliation methods to transversely isolate structural unit of PCNFs for further understanding of CNFs' structure.

ACS Nano, 2011, 5 (8), pp 6254-6261

Separation of structural units from GPCNFs

Development and control of mesopores in PCNFs

Introduction

Objective

Developing a general method based on the oxidation and heat expansion to introduce the mesoporous channels into CNFs.

Chemistry of Materials, in press (2011)

Structural Defects of TCNFs

Heat treatment	d ₀₀₂ (Å)	Lc ₀₀₂ (nm)	La ₁₁₀ (nm)
As-prepared	3.369	9.5	6.5
Graphitic temp. 2000°C	3.387	13.7	6.7
Graphitic temp. 2800°C	3.375	16.2	6.9

KNF-ST

KNF-ST2000

KNF-KH2

Schematic Models of TCNF

Applications of CNFs

- Energy saving devices (Battery and Capacitor)
- Nano-fluid
- Supports for heterogeneous catalysts
 - **Fuel Cell, Green Chemistry**
- Air cleaning
- Catalyst
- FED, FEBL
- Composites

Carbons in Lithium Ion Batteries

- Anodic Electrode to Hold Reduced Li-ion
 Intercalation → Graphite
 Surface Electron Transfer into Sealed Void
 → Hard or Low Temperature
 Calcined Carbon
- <u>Electron Conductive Material</u> Anodic Carbon and Cathodes Material
- Expansion Moderator

Holding and Release of Ion Is Accompanied with Volumetric Charge

Larger Capacity per Volume \rightarrow Larger Expansion

Carbon Electrode for Li-ion Battery

- Graphite electrode is currently established.
 - Low cost with cheaper natural graphite
 - Limited capacity less than 372 mAh/g
 - Limited power density

 Larger power density for hybrid vehicle
 → Glassy carbon with small crystalline unit (Low Cond.) Thinner carbon nanofiber

Larger capacity

→ Glassy carbon with large inner surface

Si or Sn family (Large volumetric change at Ch/Disc) ⇒ Functional nano-composites

Electrode Materials for Lithium Secondary Batter

Different materials for different applications

A spectacularly reactive cathode Nature Materials 2, 705–706 (2003)

				CNF			
	Graphite	Si	Sn	Platelet	Tubular	Herring- bone	
Capacity (mAh/g)	350	4000	900	290 (340)	220 (280)	80 (600)	
Density (g/cc)	2.24	2.33	5.77~ 7.27	2.1	2.1	2.0	
Expansion ratio (time)	1.2	4	3	Less than 1.2	Less than 1.2	Less than 1.2	

Typical Properties of Synthetic Graphites

Analysis of physical properties

	Elemental	Surface	Oxidation	XRD Analysis		
	Analysis C(%)	area (m²/g)	starting Temp.(°C)	D ₀₀₂ (Å)	Lc ₀₀₂ (nm)	
p-CNF	98.9	67	582	3.363	29	
p-CNF-G	99.8	43	680	3.365	59	
p-CNF-G-NA	99.6	54	628	3.360	>100	
p-CNF-G-NA-G	99.8	47	674	3.362	>100	
MAG	99.8	< 4	580	3.354	99	

Analysis of SEM & TEM Image

According to the graphitization degree, we found some difference at edge plane by TEM analysis

Electrochemical properties

Electrochemical properties

	Discharg	e capacity	Initial coulombic	
	0.25V	0.5V	1.5V	efficiency(%)
p-CNF	239	270	308	60.4
p-CNF-G	268 290		307	58.2
p-CNF-G-NA	274	308	327	52.5
p-CNF-G-NA-G	285	308	330	59.5
MAG	290	305	320	80.6

- Discharge capacity depends on graphitization degree .
- p-CNF-G-NA (& -G) showed good electrochemical properties.
- They are almost same with MAG (synthetic graphite)
- But, initial coulombic efficiency is low (52~60%) compared to MAG(over 80%)

Effects of Boron Additives – XRD analysis

B/A (5wt%)	d002(A)	Lc002 (nm)		
p-CNF-G	3.357	> 100		
p-CNF-G-NA	3.356	85.4		
p-CNF-G-NA-G	3.356	75.4		

B/A (20wt%)	d002(A)	Lc002 (nm)		
p-CNF-G	3.357	> 100		
p-CNF-G-NA	3.361	> 100		
p-CNF-G-NA-G	3.358	> 100		

p-CNF-G	3.355	> 100		
p-CNF-G-NA	3.359	82.2		
p-CNF-G-NA-G	3.357	> 100		

B/C (20wt%)	d002(A)	Lc002 (nm)		
p-CNF-G	3.355	> 100		
p-CNF-G-NA	3.355	> 100		
p-CNF-G-NA-G	3.355	66.7		

	XRD Analysis					
No additive	D ₀₀₂ (Å)	Lc ₀₀₂ (nm)				
p-CNF	3.363	29				
p-CNF-G	3.365	59				
p-CNF-G-NA	3.360	>100				
p-CNF-G-NA-G	3.362	>100				

Compare to no additives,

- Added elements had an effect on increasing graphitization degree.
- Graphitization degree was increased more by B/C addition.

Effects of Additive – TG analysis

	Oxidation starting temperature ($^{\circ}$)								
	p-CNF-G p-CNF-G-NA p-CNF-G-NA-G								
No additive	680	628	674						
B/A (5wt%)	686	634	661						
B/A (20wt%)	697	670	683						

	Oxidation starting temperature (°C) p-CNF-G p-CNF-G-NA p-CNF-G-NA-G							
No additive	680	628	674					
B/C (5wt%)	727	671	687					
B/C (20wt%)	706	659	700					

Effects of Additive – Electrochemical properties

		p	-CNF-G		p-CNF-G-NA				p-CNF-G-NA-G			Ĵ
	Discharge capacity (mAh/g)		capacity N/g) Coulombic efficiency		Discha (arge capa mAh/g)	icity	Coulombic efficiency	Disch	arge cap (mAh/g)	acity	Coulombic efficiency
	0.25V	0.5V	1.5V	(%)	0.25V	0.5V	1.5V	(%)	0.25V	0.5V	1.5V	(%)
No additive	268	290	307	58.2	274	308	327	52.5	285	308	330	59.5
B/A (5wt%)	259	294	325	61.1	260	300	334	58.6	276	308	339	58.6
B/A (20wt%)	261	295	325	77.3	266	303	338	70.3	-	-	-	-
B/C (5wt%)	233	265	292	66.9	259	303	336	65.7	261	293	323	60.3
B/C (20wt%)	227	268	296	72.7	-	-	-	-	259	300	329	72.2

Highly graphitic CNFs

- **CNF of similar graphitic properties with Natural Graphite**
- CNT usually shows low graphitic properties
- Conductive materials or supports for heterogeneous catalysts

GPCNF-N			Preparation conditions	d ₀₀₂ (nm)	Lc(002) (nm)
				0.0005	70
PONE	HCNE	G-PCNF	Fe catalyst, 620, CO/H2 : 4/1	0,3305	12
			2800°C heat treatment of PCNF	0.3364	83
↓黒鉛化		G-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs	0.3362	152
GPCNF		GG-PCNF-N	2800°C heat treatment of GPCNFN	0.3362	106
	硝酸処理	BA-G-PCNF	Boric acid added heat treatment of PCNF	0.3359	115
G-PCNF-N		BA-GG-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs Boric acid added heat treatment	0.3357	377
	B黒鉛化	BC-G-PCNF	Boron carbide added heat treatment of PCNF	0.3354	178
BA-GGPCNF-N		BC-GG-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs Boron carbide added heat treatment	0.3354	167

TEM of GPCNF(B addition)

STM of GPCNF(B addition)

Microscopic observation of PCNFs

70

J PHYS CHEM B 108 (5): 1533-1536 FEB 5 2004

Typical Synthetic Graphite

(MAG; Hitachi Chemical Co.)

Typical Synthetic Graphite

(MAG; Hitachi Chemical Co.)

Electrode Materials for Li-ion Batteries

Application sections	Energy sources for the next generation mobile machines : PC, Small TV, PDA, EV, CC		
High Capacity	2900mAh/18650 type → 3600mAh/18650 type Over 2 times capacity should be improved in anode materials		
High Power	CNF + Graphite + ? : for high power Demands for high speed charge and discharge : Hybrid Vehicle, UPS, PC		

Applying CNF Composites for Problems Solving

Unique application to CNF structure

100% of PC Solvent for Electrolyte can be used to P-CNF anodic carbon

- Development of anodic composite materials for high power using very small crystallinity (Containing the modification of natural graphite)
- Development of anodic composite materials for ultra high capacity using CNF composition (Now on the field testing)

Rate Characteristics of SPR & SPR-CNF Composites

Cycle of discharge capacity at different rate(0.1C, 1.0C rate) of SPR and SPR-CNF composites

SEM images of SPR(a), MAG(c), HFP(e), and their CNF composites(b, d, f)

Schematic models of charge states

(a) Graphite

(b) Graphite - CNF composite

Anode for Next Generation

<u>Glassy Carbon;</u>

Larger Capacity per Weight → Larger Capacity per Volume

<u>Non-carbon Materials;</u>

Si Materials Sn Materials

 \rightarrow Poor Cycle Stability

SEM of SiO-CNF

SEI 10.0kV X100,000 100nm WD 7.8mm

Structural Problem in CH-DCH processes

TEM images of Si-CNF composites

Schematic Model of CNF synthesized Si

Conjectured mechanism of composed CNF to improve electrochemical properties

1. Thin CNFs

Thickness : 10~50nm Seems Like Ivy Afford the electric conductive path of Si powder.

2. Thick CNFs

Thickness : 100~300nm Channeling effect between the particles

⇒ Compose conductive network

Schematic Model of CNF synthesized Si

83

Expansion Ratios

SiOの含有量と極板膨張の関係

Si-CNF

0.4µm Siの P/C形成 段階別 3cycleまでの特性評価

(a, c, e): 0.4µm Si(As received), (b, d, f): P/C形成された 0.4µm Si a, b: Si-CNF 複合体, c, d: 触媒除去, e, f: P/C 再形成

Si-CNF composite / Graphite Hybridization

CNF for Capacitor

Edge effect Polarization Pseudo Capacitance

Basal of Hexagonal Planes

Typical Surface of Carbon Nano Fibers Strong Dependence of Capacitance over Graphite Surface Structure

Various CNFs

Surface-modified PCNFs

Capacitances of various CNFs

Cyclic voltammograms of various carbon nanofibers in 0.5 M H₂SO₄ solution, scan rate : 10 mV/sec.

Capacitances were calculated with current values from cyclic voltammetry at 0.45 V

Capacitances of modified PCNFs

Cyclic voltammograms of surface modified carbon nanofibers in 0.5 M H2SO4 solution, scan rate : 10 mV/sec.

TEM and ICP-MS results of Ru/CNFs

2

3

4(nm)

ICP-MS analysis of Ru/CNFs

Catalyst	Ru amounts (wt%)
Ru/PCNF	1.7 (± 0.1)
Ru/HCNF	1.4 (± 0.4)
Ru/TCNF	2.5 (± 1.9)

Electrochemical capacitance of Ru/CNFs (F/g)							
	Pristine CN Fs	Non-polariz ed Ru/CNFs	Increase ratio by Ru effect (calculated from CNF (times))	Polarized R u/CNFs	Increase ratio by polarization (calculated from R u/CNF (times))	After Ru stri pping	Decrease ratio by Ru stripping (calculated from p olarized Ru/CNF (times))
Ru/PCNF	12.5	62.6	5.0	75.7	1.2	19.5	1 / 3.9
Ru/HCNF	23.4	54.7	2.3	67.4	1.2	44.0	1 / 1.5
Ru/TCNF	4.5	38.4	8.5	47.1	1.2	28.6	1 / 1.6

CNF Supports in DMFC

Fuel Cell

Roles of Carbon

Activation of Noble Metal

High Dispersion, Chemical Activation, Edge of Carbon Plane!

Support/Metal Interaction

• Transferring Proton of Noble Metal to Membrane

Proton Conductor

Good Bridging with Proton Conduction Binder

- Electron Conductivity
- Chemical Stability
- Surface and Pore of Carbon

Finer Carbons to Satisfy Both Requirements

- **Dispersion of Noble Metal on Carbon with Smaller Size**
- \rightarrow Carbon Nanofibers

Objective and Approach

Objective

Development of highly active catalyst for DMFC anode using carbon nanofiber (CNF)

Approach	
Synthesis:	Selective Syntheses, Various Structure, Diameter of CNFs
Selection:	Best structure, Diameter, Surface, Surface area, functional group
Modification:	Introduction of Mesoporosity onto CNF to increase the Effective surface Area
Analysis:	Half & Full cell tests, SEM, TEM,
Further study:	Searching further increasing methods for catalytic activity

Carbon nanofiber vs. Carbon blac	k landa a landa
Advantage	Disadvantage
Active Hexagonal Edges	Low Effective Surface Area
Relatively high graphitizability	Nanofibrous Entanglement (Difficulty of dispersion)
Relatively high electric conductivity	Low contents of secondary structure and functional groups

Selective Synthesis of Carbon Nanofibers

Experiments

Preparation of Catalysts

Equipments

Single Cell Test Kit

Half Cell Test

Electrode	Carbon Paper (\phi1cm)			Go	old (ø1cr	n)		
Catalyst	PtRu 60wt%	Pt	Ru	C	PtRu 40wt%	Pt	Ru	C
Amount (mg)	5mg Slurry	2	1	2	0.3mg Slurry	0.08	0.04	0.18

Methanol Oxidation Property

Noble Metal		Slurry Amount	Pt	Ru	С
	Content	(mg/cm ²)	(mg/cm ²)		
Pt	Ru 60wt%	5	2	1	2

Thick Herringbone CNF showed relatively high activity

Methanol Oxidation Property

Single Cell Test of Various CNFs

Noble Metal	Slurry Amount	Pt	Ru	С
Content	(mg/cm ²)	(mg/cm	ng/cm ²)	,
PtRu 40wt%	7.5	2	1	4 5

	Maximum Power Density (mw/cm ²)				
Code	30°C	60°C	90°C		
Tubular	33	82	112		
Platelet	52	108	157		
Thin Herringbone	28	81	97		
Thick Herringbone	46	113	165		

PtRu Catalyst on Mesoporous CNF

Well dispersed PtRu catalyst was observed in the TEM photographs. The average size of catalyst particles was about 3nm. Catalysts should be existed in the mesopores as well as on the exterior surface 106

Model for Meso-porous H-CNF with Proton

- 3 times increase of methanol oxidation in half cell
- 30% increase of single cell performance
 - Studying about new proton conduction system in Mesopore

Single Cell Performance

Current Density (mA/cm²)

Catalyst	Noble Metal Content (wt%)	Metal (mW/cm ²)		
		30°C	60°C	90°C
Е-ТЕК	60	41	102	140
H-CNF	40	46	113	165
Mesoporous H-CNF	40	56	117	185

Discrepancy of half cell and full cell performances

Preparation of Thin H-CNF

Under 30 nm Diameter of H-CNF, Difficulty of Dispersion FeNi Catalyst, Thin H-CNF

Thin H-CNF as Support Material

Various Structures of CNFs, Single Cell Performances

Preparation of Various Diameters of H-CNF

Difficulty of Dispersion in Thin H-CNF, Good Dispersion of Medium and Thick H-CNF Optimization of Catalyst Preparation

Difficult Dispersion

Good Dispersion

Catalytic Activity of Highly dispersed Thin H-CNF

Nano-dispersed Equipment, 16500rpm, 1min, 30 times

(a) NM55(Ni:MgO = 5:5)
 (b) NMM415(Ni:Mo:MgO = 4:1:5)
 (c) FMM415(Fe:Mo:MgO = 4:1:5)
 (d) NFM415(Ni:Fe:MgO = 4:1:5)
 (e) CM55(Co:MgO = 5:5)
 (f) 40%Pt-Ru/C, pH3-pH4, 60°C Preparation

		Single Cell Max. Power density (mW/cm ²)					
		30°C	60	°C	9	0°℃	
	Not treated	28		81		97	
	NM55	52	1	08	182		
	NMM415	34	34 95			168	
Nana dispersion Equipment	FMM415	40		92		158	
	NFM415	56]	18		184	
Impeller	CM55	49	108		176		
	Johnson M. 60wt%, Pt 2mg/cm ²	55	121		162		
HE CCC SOPER		貴金属	属含有量	Slurry量 (mg/cm ²)	Pt (n	Ru ng/cm ²)	С
		PfRn	40wt%	5	1 33	0.67	3

Single cell performance of NFM- catalyst

based on the unit electrode area

Single cell performance of catalyst supported on NFM examined at
(a)30°C, (b) 60°C, and (c) 90°C.

	Single cell Power density. Max(mW/cm					
	30°C	60°C	90°C			
Not dispersion prepared temperature 25oC	56	118	184			
Prepared temperature 0oC	76	140	246			
Prepared temperature 10oC	68	129	227			
Prepared temperature 25oC	68	144	236			
Prepared temperature 60oC	66	131	223			
60%Pt-Ru/C (Johnson matthey)	55	121	¹⁶² 13			

Oxidation Stability of CNF

- ◆ カーボンブラックは電気化学的な酸化還元反応が起こり、キャパシタンスが 増加する。
- ♦ GP-CNF-NAは電気化学的な酸化還元反応が起こらないためプロファイルが ほとんど変わらない。

PtRu Nano-chains

10 wt% PtRu nanochain

TEM images of 40%Pt/PCNF+CB

Evaluation of 40%Pt/PCNF+CB

Data from Suntel Co. Ltd.

CNF for Air Purification

ACF-CNF

	Breakthroght time[hr]	Steady state activity [%]	Surface Area [m²/g]
H1100(ACF)	6	80	1500
0.5%Metallocene (5min)	12	75	1130
1%Metallocene (5min)	16	45	1120
5%Metallocene(5min)	17	20	1116

Pitch based	BET		N/C				
ACF	(m^2 / g)	С	Н	Ν	0	N/C	
OG5A	563	92.4	0.6	0.7	6.0	0.007	
OG7A	901	93.0	0.6	0.8	5.4	0.007	
OG10A	1085	95.3	0.6	0.5	3.4	0.004	
OG15A	1606	95.2	0.6	0.3	3.4	0.003	
OG20A	1924	94.1	0.6	0.4	4.8	0.003	
PAN based	BET		Elemental ar	nalysis (wt %)		N/C	
ACF	(m^2 / g)	С	Н	Ν	0	e	
FE100	450	70.9	2.0	8.4	17.3	0.102	
FE200	650	72.5	1.8	4.8	17.9	0.057	
FE300	880	74.3	1.6	3.3	17.2	0.038	
FE400	1020	76.8	1.6	2.3	19.4	0.026	

HCHO adsorption characteristics of ACFs

Break through time

- ♦Pitch-based ACF : 15A < 20A < 10A < 7A < 5A
- ◆PAN-base ACF : FE400 < FE300 < FE200 < FE100

WATER Competitive adsorption decreases the adsorption amount of HCHO

Dry condition (solid line) and wet condition (dashed line) for the different kinds of a) FE series and b) OG series

Comparison of formaldehyde adsorption in different ACFs between dry and wet condition

HCHO adsorption characteristics of PACNF in humidified atmosphere

Under the circumstances of humidity (RH=50%), PACNF shows specific prominent adsorption characteristics for formaldehyde.

Water adsorption property

CNF Support for Heterogeneous Catalysts

Oxidation and/or Reduction Desulfurization/Denitrogenation Demetallization

Reduction Catalyst

高分散かつサイズ制御された金属ナノ粒子の創製と触媒作用

金属ナノ粒子担持炭素ナノ繊維の応用例

- The potential of several kinds of carbon Nanofiber as supports for NiMo catalysts in hydrodesulfurization of SRGO (Straight Run Gas Oil) and HSRGO (Hydrotreated Straight Run Gas Oil)
- The performance were compared with NiMo/Al₂O₃
 commercial catalyst to get the relationship between the some supports materials physical -chemical character, active metal dispersion and HDS activity of catalysts

Catalytic activity of NiMoS catalyst on HDS of SRGO

- NiMo/HCNF, showed higher activity for HDS of SRGO than NiMo/TCNF, NiMo/PCNF
- NiMo/HCNF2 and NiMo/HCNF3 with higher surface area showed higher activity than NiMo/HCNF1

Physical and chemical characteristics of supports and catalyst

(a)HCNF/Al₂O₃(b)HCNF (c)TCNF (d)PCNF

LN₂ adsorption-desorption test result of support materials calculated by BJH desorption method

Sample	R _p (nm)	S(m ² /g)	V _p (cc/g)
Al ₂ O ₃	8.0	231	0.914
HCNF0	9.2	105	0.593
TCNF	2.1	59	0.568
PCNF	2.4	59	0.534
HCNF1	1.7	271	0.270
HCNF2	1.7	303	0.301
HCNF3	1.9	312	0.343

•HCNF3 supported NiMo catalysts showed higher reducibility •H₂-TPR results show consistencywith HDS acivity

CNF for Luminescence

Objective

Development of FEBL using CNF instead of CNT

Expectation

- Patent
- Activation of nano-materials

Final Target

- CNF Paste
- 10 50nm(Aspect ratio over 150)
- 7 inch panel using CNF
- Fill factor: over 80%
- Homogeneity: over 90%
- Brightness: over 6000cd/m² (12000 V)

CNF Development

3 E system 7 inch Panel

Cathode 電位、Anode 電位、電流

CNF for Composites

Electric conductivity Thermal Conductivity Tensile Strength and Modulus

Electric Conductivity for Polymer Composites

触媒	合成条件	平均収率	繊径	CNF 構造	電気伝導度
Co:Fe:Cr:Mg= 4:2:2:2 (重量比) [触媒前処理: Air, 600°C, 4h]	460°C , 60min, C₂H₄ :H₂=160:40	23.1倍	40nm	Herring-bone	Out of range
	600°C , 60min, C₂H₄ :H₂=160:40	26.5倍	40nm	Tubular	4.1
	600°C , 60min, C₃H ₈ :H₂=160:40	25.1倍	40nm	Tubular	5.1/5.6
	700°C , 60min, <mark>C₃H</mark> ₈ :H₂=160:40	21.5倍	70nm	Tubular	4

Nano fluid

A Novel Nanofiller for Nanofluid Applications

a) Photograph of CNF-10-water suspensions. Left: pristine CNFs (0.5 vol %); middle: TCNFs from plasma oxidation for 30 min (0.5 vol %); right: TCNFwater suspension diluted 20 times. b) TC enhancement of nanofluid containing various contents of CNFs. The dot-dashed line indicates the theoretical prediction for TC enhancement based on the Hamilton-Crosser (H-C) equation

Small, Volume 3, Issue 7, Date: July 2, 2007, Pages: 1209-1213

SEM images of a) pristine CNFs and b) TCNFs (CNF-10). Insets: higher-magnification SEM images

Thermal Conductivity for Rubber Composites

		1	2	3	4	5		
MB	Butyl rubber	100	100	100	100	100		
	Filler	60	60	60	60	60		
	MB 薬品	13	13	13	13	13		
	ONT	0	10	10	10	10		
	CNT	現用	JEIO	KKPC-1	KKPC-2	KKPC-3 *		
FM	FM	12	12	12	12	12		

Heat conductivity	TMCD	0.296	0.378	0.331	0.342	0.334
	%	100	128	112	116	109

- 1番 : control
- 2番 : control + JEIO 10 phr
- 3番~4番: control + KKPC sample 10 phr
- 1. KKPC-1: 120nm 繊径(AS-prepared) Fe:Ni:Co:Mg=7:0.5:0.5:2 触媒を用いて C₂H₄ ガスで合成した太いTubular
- 3. KKPC-3: KKPC-1の触媒を除去したもの

Experimental

Preparation of CNF-MgO composites

Catalysts

KNF003(Fe/Mo/MgO)
CoCrMgO (6/2/2)
FNMgO(Fe/Ni/MgO)

(a) (b) (C)

Schematic pictures of CNF structures (a) CNF composed of long nano-rod (b) CNF composed of short nano-rod (c) CNF composed of nano-plate

Schematic picture of MgO refractory composed of MgO, Graphite and MgO-CNF

Not submitted

MgO-CNF

CNF for Ceramic Conductivity

・KNF-MgO-004のSEMとTEM写真: Herringbone CNF/MgO

SEM images of KNF003composed refractory Crack propagation prevention mechanism

<u>CNF composed MgO added refractory</u> (a) No CNF-MgO (b) CNF-MgO added

Conclusions

- Best Structure Must Be Selected For Each Objective and Prepared.
 - Preparation step (Selective and Controlled Synthesis)
 - Modifications
- Carbon Nanofibers Can Be
 - > A Promising Candidate
 - As A Unique Component
- Composite Structure Must Be Always Designed.
New Carbonaceous Materials Technology

New feasible technology to solve urgent energy and environmental problems which fusion conventional fuel science, carbon technology and nano-carbon technology.

Fossil Fuel Science & Technology

- Petroleum Chemistry, Technology
- Coal & Biomass Sciences
- Catalyst, Mining

Conventional Carbon Technology

- Carbonaceous Materials Sciences
- Carbon Technology
- Carbon alloy science
- Activated carbon science

Nano Carbon Technology

- Nano structural concept
- Nano technologic method

Why New Carbon Technology through the fusion of Conventional and Nano Carbon Technologies ?

- Innovation of performances of carbon materials.
- Consumption of fossil fuels grows by 2~3 times up to 2050.
 - High utilizations of fossil fuels and biproducts,
 - Decreasing environmental burdens

Lab Staffs

- ✓ Isao Mochida: Professor of special appointment
- ✓ Seong-Ho Yoon: Professor
- ✓ Jin Miyawaki: Assistant Professor
- ✓ Satoko Mitoma: Researcher of Alliance
- ✓ 1 Guest Professor
- ✓ 3 Post-doctorates
- ✓ 1 Researcher for Analyses
- ✓ 9 Doctor course students
- ✓ 5 Mater course students
- ✓ 3 Secretary

- Faculties
- <u>1 Post-doctorate</u>
- <u>3 Doctor course students</u>

Email: yoon@cm.kyushu-u.ac.jp

KYUSHU UNIVERSITY

IMCE 先導物質化学研究所

Thank you for attentions!