

燃料電池の名前	電解質	修飾電力 (W)	作業温度(℃)	効率 (セル)	効率性(システム)	ステータス	コスト(米ドル/kW の
空気亜鉛電池	アルカリ水溶液					量産	
再生燃料電池	高分子膜(アイオノ マー)					商用/研究	
アルカリ型燃料電 池	アルカリ水溶液	10 - 100キロワット		から70パーセント	62パーセント	商用/研究	
ダイレクトメタノール 型燃料電池	高分子膜(アイオノ マー)	100 MW - キロワッ ト	から120	から30パーセント	から20パーセント	商用/研究	125
直接エタノール燃 料電池	高分子膜(アイオノ マー)	MW∕cm²∅	25 ? 90から120			研究	
プロトン交換膜燃料 電池	高分子膜(アイオノ マー)	100W - 500kWØ	から120 (ナフィオ ン) 125から220 (PBI)	から70パーセント	から50パーセント	商用/研究	50から100
りん酸形燃料電池	溶融したリン 酸(H ₃ PO ₄₎	メガワット	カンら200	55パーセント	パーセント CO-GEN:90%	商用/研究	4から4.50
溶融炭酸塩型燃料 電池	溶融アルカリ炭酸 塩	メガワット	カ×ら650	55パーセント	47パーセント	商用/研究	
管状の固体酸化物 形燃料電池 (TSOPC)	0 ^{2 -} セラミック伝導 酸化物を	メガワット	から1100	から65パーセント	から60パーセント	商用/研究	
プロトン性セラミック 燃料電池	H *伝導性セラミック ス酸化物		700			研究	
ダイレクトカーボン 供料電油	いくつかの異なる		から850	80パーセント	70パーセント	商用/研究	

電池温	度	電池の種類	電解質	光电ロ刀 (発電効率(LH V))	用途
000°C -	1	固体酸化物形 (SOFC)	安定化 ジルコニア	数~数十万kW (5 0~6 0%)	產業用、分散電源用
650°C 500°C -		溶融炭酸塩形 (M C F C)	溶融炭酸塩	数百~数十万kW 〈4 5~6 0%〉	產業用、分散電源用
190°C		りん酸形 (PAFC)	りん酸	数十~数千kW (35~45%)	事業用,産業用
- ℃001 80℃		固体高分子形 (PEFC)	イオン 交換膜	数~300kW (30~40%)	家庭用。小型業務用 移動体。携帯用

Fuel Cell		Comparison of Fuel Cell Technologies							
Type	Common Electrolyte	Operating Temperature	Typical Stack Size	Efficiency	Applications	Advantages	Disadvantages		
Polymer Electrolyte Membrane (PEM)	Perlluoro sulfonic acid	50-100°C 122-212° typically 80°C	<1k₩-100k₩	60% transpor- tation 35% stationary	Backup power Portable power Distributed generation Transporation Specialty vehicles	Solid electrolyte re- duces corrosion & electrolyte management problems Low temperature Guick start-up	Expensive catalysts Sensitive to fuel impurities Low temperature waste heat		
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90-100°C 194-212°F	10-100 kW	60%	Military Space	Cathode reaction faster in alkaline electrolyte, leads to high performance Low cost components	Sensitive to CO ₂ in fuel and air Electrolyte management		
Phosphoric Acid (PAFC)	Phosphoric acid soaked in a matrix	150-200°C 302-392°F	400 kW 100 kW module	40%	Distributed generation	Higher temperature enables CHP Increased tolerance to fuel impurities	Pt catalyst Long start up time Low current and power		
Molten Carbonate (MCFC)	Solution of lithium, sodium, and/ or potassium carbonates, soaked in a matrix	600-700°C 1112-1292°F	300 kW-3 MW 300 kW module	45-50%	Electric utility Distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP	High temperature cor- rosion and breakdown of cell components Long start up time Low power density		
Solid Oxide (SOFC)	Yttria stabi- lized zirconia	700-1000°C 1202-1832°F	1kW-2 MW	60%	Auxiliary power Electric utility Distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte Suitable for CHP & CHP Hybrid/GT cycle	High temperature cor- rosion and breakdown of cell components High temperature opera- tion requires long start up time and limits		

<u>PEMFCに使用される炭素材の問題点</u>						
炭素材の種類	問題点	研究傾向				
触媒(担体)	 低活性 白金(高コスト) 	 担体の開発→CNT, CNF, Mesoporous carbon, etc. 窒素含有カーボン Fe-Co-Ni 				
触媒支持体	• 高電導度 • コスト	 CF-CNT/CNFの複合体 ピッチ系炭素繊維 その他 				
Separator	 伝導性(電気・熱) 腐食性 高コスト 厚い 	 黒鉛・高分子複合体 CNT/高分子複合体 鉄板(厚さ) その他 				
	• 厚い	• ての <u>他</u>				

Background

1.	Carbon	Black as	catalytic	supports	for	DMFC and	PEMFC
----	--------	----------	-----------	----------	-----	----------	-------

CB has advantageous characteristics of high electric conductivity, high surface area, developed surface and proper kinds and amounts of functional groups, which are very suitable for the well-dispersion of precious metal. As CB has already attained the limitation for improving the catalytic activity, novel support material for higher catalytic activity should be necessary.

2. Nano-carbon as catalytic supports for DMFC and PEMFC

Carbon nanotube (CNT) and Carbon nanofiber (CNF) have been extensively studied as novel catalytic supports during last 2 decades.

3. CNF as a catalytic support for DMFC and PEMFC

Advantage and disadvantage of CNF

➤ Advantage: Various structures and surface, higher crystallinity, Higher electric conductivity, Surface edges

> Disadvantage: Low surface area, low dispersion property, small functional groups

13

pter 3. Selective Synthesis of Carbon Nanofibers as Better Catalyst Supports for Low Temperature Fuel Cells, long, M. Jun, I. Mochida, S. Yoon, Wiley VCH, pp. 71-87, 2009							
2. Application of CNFs for the catalytic							
	supports of DMFC						
 ✓ Examination of the effect of CNF structure on the catalytic activity for DMFC Ref.) Seong-Ho Yoon et al. Carbon, 43, (2005), 1828–1838. 							
Preparation	Tubular CNF	Platelet CNF	Herringbone CN	F			
conditions			Thick H-CNF	Thin H-CNF			
Catalyst	Fe-Ni	Fe	Cu-Ni	Ni-MgO			
Temp.(°C)	630	600	580	590			
Gases	Co/H ₂	Co/H ₂	C_2H_4/H_2	C_2H_4/H_2			

15

_

Optimize	d application of CNF as high performance catalytic supports fo DMFC and PEMFC
₩ 2	Examination of various CNFs as catalyst supports for DMFC
₩ 3	Introduction mesopores to CNF for improving the catalytic activity for
	DMFC
₩ 4	Improving the dispersion of small CNFs for improving catalytic activity
	of DMFC using nano-dispersion machine
➡ 5	CNF compositeness on the surface of CB for improving the catalytic
	activity of DMFC
➡ 6	Hybridization of CNF and CB for obtaining the catalytic activity of
	DEMEC

Objective

Characteristics of various CNFs							
Structure Tubular Platelet CNF CNF		Herringb	one CNF				
Code		T-CNF	P-CNF	Thick H-CNF	Thin H-CNF		
Diameter (nm) 40–60 100–250 150–350		10-60					
x	Lc (002) (nm)	13	30	3	7		
R D	d ₀₀₂ (Å)	3.37	3.36	3.45	3.42		
N ₂ -BET SA (m²/g)		90	90	250	98		
		Thick H-CN	F showed larges	t surface area $_{\circ}$			
	17						

TEM images of catalysts (40wt%PtRu)						
T-CNF (40wt%)	P-CNF (40wt%)	Thick H-CNF (40wt%)	Thin H-CNF (40wt%)			
		1				
	dum.	60 m.	50 <u>(m</u>			
T-CNF and Thick H-0	CNF showed higher d	ispersion compared t	o P-CNF and thin H-			

Measurement conditions for half cell							
	Containing amounts of precious metals	Slurry amounts (mg/cm²)	Pt	Ru (mg/cm²)	С		
Catalyst amount	-Reference catalyst- Commercial 60%PtRu/C ✓E-TEK (E-TEK) ✓Johnson Matthey (JM)	5	2	1	2		
	-Catalyst- 40% PtRu/CNF	5	1.33	0.67	3		
Electrode size	2.5 × 2.5 cm ²						
	Electrolyte membrane Nafion 115						
MEA	Pressure	100 kg/c	cm ²				
	Temperature		135°C、1	0分			
El	Anode : 2M	メタノール (2 n	nl/min)				
Flow rate	Cathode Oxygen (200 ml/min)						

Short summary

- NH-CNF was successfully obtained through the partial gasification of Thick H-CNF. NH-CNF showed higher surface area compared to thick H-CNF.
- 2. PtRu/NH-CNF showed higher oxidation activity of methanol compared to that of PtRu/thick H-CNF.
- 3. 40wt% of PtRu supporting is determined as most adequate for NH-CNF.

SEM and TEM images of various small CNFs						
	FMM	СМ	NM	NFM		
Catalyst	Fe: Mo: MgO	Co: MgO	Ni: MgO	Ni: Fe: MgO		
Diameter (nm)	5-15	7–20	10-60	20–50		
SEM	40 10.0 10.0 10.0 0.0 10.0 0.0 10.0 10.0	0 BR 4580 IGT 0160				
TEM	To me		10 mm	10 mm		
Structure	Tubular	Herringbone	Herringbone	Herringbone		
N ₂ -BET SA(m²/g)	275	247	98	111		
31						

Thin CNF as a catalytic support for DMFC Smaller CNF (5–50nm) shows larger outer surface area, but small CNF shows agglomerated state which can be very difficult to disperse. Nano-dispersion machine was applied to disperse small CNF at first. Small CNF was used as catalyst support for DMFC "selective synthesis of thin carbon nanofibers: I. Over nickel-iron alloys supported on carbon black" Carbon 42, 1765-1781, 2001 "selective synthesis of thin carbon nanofibers: II. Over nickel-iron alloys supported on carbon black" Carbon 42, 1765-1781, 2004 "selective synthesis of thin carbon nanofibers: II. Over nickel-iron alloys supported on carbon black" Carbon 42, 1765-1781, 2004

Single cell test of PtRu/CM30					
30°C	A Children of the second secon	60°C	200 www.Mathyy 200 100 100 100 100 100 100 100 100 100	90°C	
Maximum power de PtRuwt%	nsity by single cell test Maximum power density (mW/cm ²)			PtRu50%/CM showed the highest maximum power	
40wt%-CM30	69	183	262	density which is very similar with commercial	
50wt%-CM30	72	194	292	70% JM catalyst.	
60wt%-CM30	72	183	276		
60wt%-Johnson Matthey	64	157	233		
70wt%-Johnson Matthey	74	196	297		
42					

Short summary

- 1. Various small CNFs were successfully prepared。
- CM which showed relatively independent fiber coagulum has higher catalytic activity compared to FMM, NM and NFM.
- 3. The proper dispersion of CM (30) using nano-disperser improved the catalytic activity compared to non-dispersed state of CM.
- 4. CM(30) showed maximum power density of 72、194、292 mW/cm² at 30, 60, and 90°C, respectively.

XRD analysis of CNF-CB composites			
XRD of PtRu/CNF-CB Pt (111) CNF-V			
C (002) Pt (2060 wt%) Pt (220) Pt (311)	≻PtRu particle size of catalysts		
	サンプル (PtRu %)	PtRuの粒子	
		サイズ (nm)	
	CNF-B (40wt%)	2.83	
(40)478)	CNF-V (40wt%)	2.75	
CNF-B	CNF-B (60wt%)	2.98	
(40,000)	CNF-V (60wt%)	2.92	
20 40 60 80			
2			
Θ			

	(40wt%PtRu)	(40wt%PtRu)	CNF-V30 (40wt%PtRu)	CNF-V60 (40wt%PtRu)
SEM	10 <u>0</u> nm	100nm	10 <u>0</u> nm	100nm
TEM				

Short	t summary
1. 2. 3.	CNF-CB composites were successfully prepared. Too long CNF growth time caused bad effect to increase the CNF bulk phases, and resulted in increasing the catalyst particle size. The optimization of CNF growth time improved the catalytic activity, and the CNF time of 10 min gave the maximum power density of 69, 168, 272 mW/cm ² at 30, 60, and 90°C, respectively.
Ę	56

15

reparation of 40%Pt/PCNF+CB			
Λ			
1 M	Sample Name	Size (XRD)	Size (TEM)
	40% Pt on PV(12hr)_P110128 10g base	2.99	2.9
	40% Pt on PV(16hr)_P110124-2 3g base	2.65	2.9
1 mm	40% Pt on PV(20hr)_P110124-1 3g base	2.46	2.8
In.	40% Pt on PV(24hr)_P101221-2 3g base	2.87	2.8
20 25 30 25 40 45 50 55 60 65 70 75 80 A			

Total summary

 CNF is the very promising support material for the catalysts of MCFC and PEMFC.

- Outer surface area with well-dispersed CNF is very effective.
 - Mesoporous CNF, small CNF
 - CNF-CB composites

75

 Hybridization of CNF with CB was very effective to optimize the MEA porosity.