1

Electric Storage of EDLC							
<u>Targets</u> Larger Capacity per Volume High Rate of Charge-Discharge → <u>Better Carbon Electrode, Guideline?</u>							
More Adso Wetting to C Surface→Pe First Cye	More Adsorption at Large Rate in the Adsorbent of Limited Volume Wetting to Carbon Surface →Penetration into Pores→Adsorption on Wall Surface→Polarized Charge→Outlet from Pore→Discharge /Desorption						
	Sizes of Electrolyte vs. Pore for Penetration Invasion into Matrix or very narrow pore of wall						
Mobility and Electrode M	Density Change or Expansion of Matrix, Volumetric Change of Electrode Adsorbed Amount of Electrolyte as well as Structure of ay Change under Electric Field						

🐇 KYUSHU UNIVERSITY

Capacity governing factors

- Surface area
- Pore size and its distribution
- Surface (Edge and Basal, Heterogeneous atom functional groups)
- Crystallinity of carbons (Resistivity)
- ...

Pores	s vs	. capa	acita	nces							
1.	1. To examine the effect of pore size and surface composition of activated carbon fibers on EDLC										
2.	2. To (. To draw out the best pore and surface images of ACFs for better performance									
	Mode	el of adsorbe	ed ions on	the surface	ce of OG a	nd FE	series				
		G-5A	FE-	100 ize (nm)	06-	ISA	FE-300				
	-	Non-sol	vated	Reference							
(CH ₃ CH ₂) ₄ N	N⁺	0.74	1	1.96			Corbon 2002 40 2612				
BF4		0.49		1.71			Carbon. 2002, 40, 2013				
(CH ₃ CH ₂) ₄ N	N*	0.68	3				Science 2006 313 1760				
BF4		0.33					Science. 2006, 313,1760				
Et₄N⁺•4P0	С				1.35		J. Electrochem. Soc. 2004,				
BF4*8PC 151, E199											
Cr. F	hyurate	e suitate lon s	12e 01 SU42	$(\Pi_2 \cup J_{12} : \underline{U})$	<u></u>	rectro	chem. 50c. 2001,148(8), A910				
👋 KYUSH	IU UN	IVERSITY						15			

Surface-modif		serie	Cyclic voltam	mograi	m of GP		<u>eries</u>
Graphitic edge	GPCNF-EC	Dome-like basal plane	me-lke sa plane Elemental analysis of GPCNF				
		Samples	Elen	nental an	N N	wt%) O	
)			PCNF	0.33	98.15	0.05	(diff.)
			GPCNF	0.10	99.90	0	0
Recovered		Recovered	GPCNF-NA	0.15	99.12	0.06	0.67
graphitic edge		graphitic edge	GPCNF-EC	0.13	98.50	0	1.37
🀝 KYUSHU UNIVERSITY							27

Electrochemical oxidation by treatment

(1) In anode (+ electrode), treated samples by different potentials

	Res	Datia af 0/0				
	н	С	N	O (diff.)	Hallo of 0/C	
as-prepared	0.81	96.88	0.00	2.31	0.02	
1.0 V	1.08	93.31	0.49	5.12	0.05	
1.5 V	1.07	94.68	0.45	3.80	0.04	
2.0 V	0.98	91.14	0.36	7.52	, 0.08	
2.5 V	0.99	91.11	0.37	7.53	0.08	

(2) In cathode (- electrode), treated samples by different potentials

	Res	Datia of 0/0			
	н	С	N	O (diff.)	Hallo of 0/C
as-prepared	0.81	96.88	0.00	2.31	0.02
1.0 V	1.10	95.01	0.42	3.47	0.04
1.5 V	1.10	95.15	0.41	3.34	0.04
2.0 V	0.99	95.72	0.24	3.05	0.03
2.5 V	1.01	95.62	0.22	3.15	0.03

28

7

Quantitative analyses of ion behaviors on the different activated carbons using solid NMR

🌺 KYUSHU UNIVERSITY

Results of experiment $\textcircled{1}$									
1 M Et4NBF4/PC electrolyte, 19F-NMR									
PTFE PTFE PTFE Peaks PTFE Main peak Sk2000 _{imp} (SSB-1) (SSB-2)									
	SK2000 _{ch}								
	SK	2000 _{dis}		1					
	SH2000 _{imp}								
	SH2000 _{ch}								
	SH	2000 _{dis}			h				
-120	-125 -13	0 -135	⁻¹⁴⁰ σ[ppm] ⁻¹	45 -150	-155 -160	-165			
			Relaxation	ntime (T ₁)[s]					
	Sample	а	A	b	В				
	SK2000 _{ch}	0.27	0.34	0.14	0.13				
	SK2000 _{dis}	-	2.87	1.53	1.13				
	SK2000	-	3.25	2.47	1.37				
	SH2000 _{ch}	0.41	0.50	0.41	0.57				
	SH2000 _{dis}	-	3.10	2.21	1.78				