

Performances	Factors			
Capacity	Sites for Li incorporation			
Potential for charge and discharge	 Reversibility of charge and discharge Over potential Non-electrochemical reaction 			
charge and discharge rate	Diffusivity of Li			
Non-dischargeable charge	 Reactivity of electrolyte Reactivity of anode, hetero atomic groups, terminal C-H, edge carbon Irreversible sites for Li incorporation 			
Cycle ability	Irreversible charge in structure			
Safety	 Stability of charged Li Li-Carbon intercalation Thermal stability of SEI Reactivity of electrolyte 			

	Precursor	Advantages	Disadvantages	
Graphite (over 2800°C)	Natural graphite Artificial graphite MCMB Needle cokes VGCF	Low discharge potential (around 0.2V) Long cycle life	Low discharge capacity (372 mAh/g) High cost	
Graphitizable carbon (600~800°C)	MCMB Meso phase pitch Green cokes	High capacity (700~1000mAh/g) Low cost	High discharge potential (around 1.0V) High irreversible capacity Poor cycle stability	
Non- graphitizable carbon (1000~1400°C)	Thermosetting polymer Glassy carbon Coal Organic material Stabilized isotropic pitch	High capacity (400~700mAh/g) Low discharge potential (around 0.1V) Low cost	High irreversible capacity	

活性炭素繊	維の微細構造
In order to remove oxygen containing functional o OG7A and OG20A were heat-treated at 80	groups for removing the heterogeneous effect of STM, 10° C in a hydrogen atmosphere (H ₂ / He =1/4).
OG7A-800H	OG20A-800H
5.5 5.6 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	Channeling pore (Inter-particles) 5 5nm 2 2 5 5 2 7 10 8 20 25nm 2 2 5 2 5 2 7 10 8 20 25 10 20 20 20 20 20 20 20 20 20 20 20 20 20
▲Vacant spaces between the two domains of	of OG20A are larger than that of OG7A.
Domain size of OG20A is a little smaller the	an that of OG7A.
Slit type pores were observed in domains	of OG7A and OG20A.
▲It can be presumed that almost pores larg mechanism.	er than 2nm nucleated by the inter-particle
10	

	Elemental analysis (wt%)			S A		
	С	Н	N	0	Ash	(m ² /g)
IM	70.6	3.6	0.38	23.7	1.7	
IM 700	89.4	1.0	0.72	582	3.1	318
IM 800	90.0	0.8	0.74	5.5	3.0	19
IM 900	91.0	0.6	1.17	4.3	3.0	3
IM 1000	91.5	0.5	1.13	4.0	2.9	54
1000 - 008 - 008 - 009 - 009				M700 M800 M900 M1000		
200 - 0 - 10	20		eta	5	D	

		Preparation	of PCS	i-CNF	compos	<u>site</u>
			PC/ or	CNF amour		
		Code	PC	CNF	PC re- coating	- Condition
	Step I	Si-PC	6 %	-	-	PC coating (900°C-CH ₄ /He- 30min)
Samples	Step II	Si-PC-CNF	6 %	93 %	-	CNF growth on PCSi (580°C-CO/He- 30min)
	Step III	Si-PC-CNF-RC	F-RC 6 % 93 % - Catalyst r	Catalyst removal by HCl		
	Step IV Si-PO	Si-PC-CNF-RC-PC	6 %	93 %	8 %	PC re-coating (900℃-CH₄/He- 30min)
Com	parison	Si-CNF		98 %	-	CNF growth directly on Si surface
						35

		Capacity at 1st cycle (mAh/g)				
		Ch	Dis	渤率 (%)		
	Si-PC-CNF	1709	1299	76.0		
Samples	Si-PC-CNF-RC	1674	1272	76.0		
	Si-PC-CNF-RC-PC	1415	1115	78.8		
Comparison	Si-CNF	2037	1535	75.4		
		Dis.(max) At 20 cycle (mAh/ g)		cycle (mAh/ g)		
		(mAh/g)	Dis	Retention rate (%)		
	Si-PC-CNF	1317	1051	80		
Samples	Si-PC-CNF-RC	1318	903	69		
	Si-PC-CNF-RC-PC	1136	873	77		
Comparison	Si-CNF	1535	670	44		

Electrochemical performances of c-SiO and c-Si-SiO-SiO, three-component electrodes. (a) Voltage profiles of c-SiO (black), c-Si-multi-20-1 (red), c-Si-multi-20-1 (red), and c-Si-multi-20-1 (black), c-Si-multi-20-1 (red), and c-Si-multi-20-1 (red), and c-Si-multi-20-1 (red), c-Si-multi-20-1 (red),