

エネルギー・環境を支える 新規機能性炭素材

宮脇 仁、尹 聖昊 九州大学先導物質化学研究所

yoon@cm.kyushu-u.ac.jp http://carbon.cm.kyushu-u.ac.jp/

炭素材の応用分野

Electric and Heat Conductions

Conductor and semi-conductor

Energy Storage

- Battery anode
- Super capacitor
- Gas storage

Environmental Protection

Activated surface

<u>Mechanical</u> <u>Reinforcement</u>

<u>High Temperature</u> <u>Materials</u>

Raw materials

Coal tar Polymer: Thermosetting and thermoplastic Heavy oil and residues Biomass

Precursor

- Pitches: CF, ACF, MCMB, AC, Binder pitch, Additives
- Polymer: AC, ACF, Glassy carbon, CF
- Cokes: Electrode, Capacitor, Battery anode, AC, Additives
- Char: AC, Additives, Reducer for Solar cell

炭素材の製造

Preparation of Composite

人造カーボンの構造の由来

Origin of Structural Units And Crystalline Defects

構造の制御はどこから?

PAN系炭素繊維の構造

Figure SEM & STM images of heat treated PAN based CFs at 1500, 2000, 2500°C

"Structural comparison of mesophase and PAN based carbon fibers" S.H. Hong, S. H. Yoon, I. Mochida Carbon2006、 (2006、7) England 7

KYUSHU UNIVERSITY

単位構造と構造の制御

IAMS, Kyushu University "Axial nano-scale microstructure in the graphitized fiber inherited from liquid crystal mesophase pitch" Carbon, 34, 83-88 (1996) S. H. Yoon, Y. Korai, K.Yokogawa, S. Fukuyama, M. Yoshimura, I. Mochida

Carbon is an Indispensable Material for Energy related Devices

Best Structure for Best Performance

Best Selection

Best Selection

Scientific Cycle

- Structural Understanding -
- Structure Preparation

— Carbon

Working Mechanism Molecular Level
 Electrochemical
 Catalytic / Kinetics
 Molecular / Heat Transfer

Surface Area, Pore: Depth & Volume

Surface Structure Surface Chemistry Based and Edge Plane, Substituents Hetero Atoms in Hexagon

Carbon Structure of Wall

Micro, Nano, Macro Structure of Carbon Wall -Graphitization Extent -Domain Structure Density, Reactivity (Activated Surface)

Precursor : Structure and Reactivity

Selection of Precursor

- Pore Framework / Density
- Properties of Pore Wall, Composition / Graphitic Extent
- Reactivity at Activation

- Non-graphitizable precursors like polymer, biomass and isotropic coke for usual AC or ACF

- Graphitizable precursors like anisotropic cokes or mesophase pitch for EDLC electrode materials

Activation Procedures

- CO₂, H₂O
- Alkali Hydroxides / Carbonates; More Research
- Selective Catalytic Gasification ; Catalyst Control

Very Large Surface Area > 3000 m²/g
 Adequate Pore And Wall

Activation reagents

- Air, CO₂, Steam
- KOH (NaOH), ZnCl₂

化学賦活法

- Higher surface area compared to the steam activation
- Almost no productions of CO and CO₂
- K metal intercalation: higher diffusivity than steam molecule

KOH	K ₂ O	K ₂ CO ₃	K
BP:1324°C	MP:490°C (350°C, KO and K)	MP:891°C	BP:774°C

活性炭の細孔構造:既存のイメージ

Schematic pore images of activated carbon fiber and activated carbon

STM images of ACFs

 ACFs consist of structural units of micro domain with diameter of around 5nm.

Cluster unit

活性炭素繊維の細孔形成

In order to remove oxygen containing functional groups for removing the heterogeneous effect of STM, OG7A and OG20A were heat-treated at 800°C in a hydrogen atmosphere ($H_2/He = 1/4$).

OG20A-800H

OG7A-800H

*Vacant spaces between the two domains of OG20A are larger than that of OG7A.

+ Domain size of OG20A is a little smaller than that of OG7A.

+ Slit type pores were observed in domains of OG7A and OG20A.

Alt can be presumed that almost pores larger than 2nm nucleated by the inter-particle mechanism.

細孔生成機構

A model for cross section of ACFs

Only skin is activated, homogeneous narrow pore exist on the surface of domains.
The activation does not reach to the middle and core

The activation does not reach to the middle and core parts.

OG5A has smallest surface area but homogeneous pores.

Skin and middle parts are activated.

Pores in domain become wider and longer than that of OG5A because of the pores formed by inter-domain mechanism.

Pores are formed by the intra-domain and inter-domain mechanisms.

Heterogeneous pores exist.

細孔生成機構

The activation proceeds to near the core.
 Domains in the surface become smaller by activation.

 OG10A have various size pores.

Whole parts of skin, middle and core are activated.
The pores from the intra-domain become larger by activation.
Owing to some domains burning, fiber diameter becomes smaller than OG5A, 7A and 10A.

More homogeneous pore distribution than that of OG10A

+Over 70% of domains are burned-off.

larger

- Pore portions from interparticle nucleation becomes
- +OG20A diameter become smaller than OG15A.

OG20A have largest surface area but heterogeneous pores.

OG15A

OG20A

細孔サイズと分布 (NLDFT法)

The pore size at peak increased in the order of OG5A<7A<10A<15A<20A.</p>

活性炭素繊維のToluene吸着特性

• The slopes of breakthrough curves for 5A and 15A were steeper than those of curves for 7A and 10A.

◆ACFs with homogeneous pores (5A and 15A) showed rapid toluene adsorption and larger capacity per unit area and longer breakthrough time, whereas ACFs with heterogeneous pores (7A and 10A) showed slow toluene adsorption and smaller capacity per unit area.

活性炭の新規応用

- 1. HCHOガス(シックハウスガス)の除去
- 2. 高性能キャパシタ電極材
- 3. 経口用薬
- 4. Capacitive De-ionization (CDI)
- 5. Heat Pump (省エネルギー応用)

1. HCHOガス(シックハウスガス)の除去

活性炭素繊維を用いたHCHOの除去

Break through time ♦Pitch-based ACF : 15A < 20A < 10A < 7A < 5A ♦PAN-base ACF : FE400 < FE300 < FE200 < FE100

Micro ATR-FTIRによるPAN系炭素繊維の表面分析

活性炭素繊維を用いたHCHOの除去(湿度の影響)

WATER Competitive adsorption decreases the adsorption amount of HCHO.

Dry condition (solid line) and wet condition (dashed line) for the different kinds of a) FE series and b) OG series

活性炭素繊維を用いたHCHOの除去(湿度の影響)

新規活性炭の概念導入(浅い細孔)

Electrospun PAN based nanofiber (100% PAN) Diameter: 800 nm, Nanotechnics (Korea)

100 times surface are a compare d to usual PAN fiber \rightarrow Can be expected very shallow and homogenous pores.

PAN系活性ナノ炭素繊維

PCNF (starting material)

> 270°C (0.5°C / min)

Stabilized PCNF

600°C in He or steam activation

PACNF

Assembly of 1.8nm~3.6nm thin film

Nano particle assembly structure

活性炭素ナノ繊維を用いたHCHOの除去

Under the circumstances of humidity (RH=50%), PACNF shows specific prominent adsorption characteristics for formaldehyde. 水分を飽和吸着させたサンプルを アルゴン中で400℃まで昇温させ、 重量変化を観察

Shallow pore

低温での重量変化 浅い細孔に吸着している 水分子の蒸発

(2) MnOx catalyst

Hybridization

Conceptual illustration of MnOx@PAN-ACNF catalyst

Dry condition (R.H. = 0%)

Sample weight: 50 mg Inlet HCHO conc.: 10 ppmv

Breakthrough time was defined as the time, at which the outlet concentration reached to 0.5 ppmv.

MnOx alone breakthroughed within 1 h.

- PAN-ACNF showed the highest performance for HCHO removal at 5% MnOx loading amount.
- Deposition of MnOx on carbon supports improved the HCHO removal activity.

Wet condition (R.H. = 90%)

Sample weight: 50 mg Inlet HCHO conc.: 10 ppmv

Breakthrough time was defined as the time, at which the outlet concentration reached to 0.5 ppmv.

MnOx alone breakthroughed within 30 min.

- Humidity was fatal to HCHO removal activity as to conventional ACFs (FE100 and FE300).
- PAN-ACNFs comparatively hold strong, showing little drop with the highest activity at 5% MnOx loading amount.

 Clear detection of CO₂ for MnOx-deposited samples (HCHO + O₂ → CO₂ + H₂O)
 No induction period for non-porous quartz wool support

(Adsorption of HCHO in PAN-ACNF micropores)
2. 高性能キャパシタ電極材

Pitch-based Activated Carbon Fibers (ACFs)

OG series : OG-5A, OG-7A, OG-10A, OG-15A, OG-20A (Osaka Gas Co., Japan)

PAN-based ACFs

FE series : FE-100, FE-200, FE-300, FE-400 (Toho TENAX Co., Japan)

Model of micropores of OG and FE series

OG-15A

FE-300

Aqueous and non-aqueous electrolytes with different ion sizes

$N_{\rm 2}$ adsorption/desorption isotherms at 77K

(calculated from t-plot method)

		Surfac (m²	e area /g)		Po	ore volur (cm³/g)	ne	Pore width (nm)		
	A _{total}	A _{external}	A _{micro}	A _{meso}	V _{total}	V _{micro}	V _{meso}	W _{micro}	W _{meso}	
OG-5A	676.8	1.2	675.6	0	0.22	0.22	0	0.65	0.0	
OG-7A	987.6	3.4	984.2	0	0.34	0.34	0	0.68	0.0	
OG-10A	1211.7	5.4	1206.3	0	0.46	0.46	0	0.77	0.0	
OG-15A	1488.0	13.9	1474.1	0	0.66	0.66	0	0.90	0.0	
OG-20A	1817.4	15.9	1801.5	0	0.97	0.97	0	1.08	0.0	
FE-100	636.9	1.2	635.7	0	0.21	0.21	0	0.67	0.0	
FE-200	909.2	2.2	907.0	0	0.33	0.33	0	0.72	0.0	
FE-300	1130.6	3.8	1099.7	27.1	0.45	0.43	0.02	0.78	1.82	
FE-400	1187.1	5.2	931.2	250.7	0.60	0.38	0.22	0.82	1.73	

Pore size distributions

(calculated by NL-DFT method)

in Et_4NBF_4/PC

in H_2SO_4

Model of adsorbed ions in micropores of OG and FE series

OG-5A

OG-15A

FE-300

²H or ¹⁹F magic angle spinning (MAS) solid state NMR

NMR equipment: Electrolytes:

Electrode states:

JEOL ECA400 $0.5 \text{ M } D_2 \text{SO}_4 \text{ (aqueous)}$ $1 \text{ M } \text{Et}_4 \text{NBF}_4 / \text{PC (non-aqueous)}$ Impregnated (IMP) Charged plus (CP) Charged minus (CM)

¹⁹F-MAS Solid-State NMR Spectra

in Et_4NBF_4

²H-MAS Solid-State NMR Spectra

T₁ Values from ²H–MAS Solid–State NMR Spectra

The shorter the T_1 value of relaxation time, the stronger the adsorption interaction between adsorbed electrolyte ions and carbon electrodes.

T ₁ (sec) for OG series								
OG-5A				OG-15A				
IN	IMP CM		IN	MP	СМ			
Free	Adsorbed	Free	Adsorbed	Free	Adsorbed	Free	Adsorbed	
0.54	0.18	0.41	0.19	0.61	0.63	0.29	0.23	

T_1 (sec) for FE series								
FE-100				FE-300				
IN	I P	СМ		IN	ΛP	СМ		
Free	Adsorbed	Free	Adsorbed	Free	Adsorbed	Free	Adsorbed	
0.31	-	0.28	-	0.13	0.05	0.19	0.09	

水蒸気賦活と化学賦活は何が違うか?

What is the difference:

- Surface area, pore size and its distribution
- Surface compositions
- Surface structure (?)
- Cost
- Waste materials

Capacitance, cost, ... How to overcome the differences?

活物質の賦活方法が電気二重層キャパシタの ⁷⁰⁰ キャパシタンスに及ぼす影響

	BFT 含有率[%]			キャパ				
試料名	比表面積 [m ² /g]	н	с	N	電極密度 [g/ml]	F/g	F/ml	F/g比 (SK/SH)
SK2000	2007	0.83	87.07	0.05	0.40	34.0	13.6	1 5
SH2000	1969	0.69	96.26	0.04	0.44	23.2	10.2	1.5

同じ比表面積を有する活性炭であっても、水蒸気賦活したものよりも KOH賦活を行ったものの方がより高いキャパシタンスを示す

<u>各状態(含浸、充電、放電)の19F固体NMRスペクトル</u>

	Norm	alized BF4-	n peak		Peak area ratio	
	PTFE Main Peak	PTFE-SSB ①	Peaks	PTFE-SSB2	ch-dis	SK/SH
SK2000 _{imp}	1	1.44	3.22	0.58		
SK2000 _{ch}	1	1.46	6.87	0.59	2.57	
SK2000 _{dis}	1	1.44	3.30	0.58	3.57	4.0
SH2000 _{imp}	1	1.42	4.32	0.62		1.0
SH2000 _{ch}	1	1.43	6.46	0.58	0.17	
SH2000 _{dis}	1	1.48	4.29	0.61	2.17	

調製した活性炭の分析

細孔径分布や比表面積がほぼ揃った活性炭を調製できた。 比表面積1000㎡/gの場合、SK、SHでキャパシタンスに差はない 比表面積2000㎡/gノ場合、SKが1.5倍ほど高い値を示した。

<u>19F固体NMRスペクトル</u>

¹⁹F固体NMR測定によるEDLC電極の活性炭細孔内における 電解質イオンの吸着特性

サンプル	PF ₆ ⁻ [×10 ³]	PTFE [×10 ³]	PF ₆ ⁻ /PTFE	PF ₆ - 吸脱着量 (ch/dis)	PF ₆ ⁻ 吸脱着量比 (SK/SH)
SK2000 _{ch}	1217.0	95.8	12.7	1.9 (SK2000 _{ch} / SK2000 _{dis})	1.6 (SK2000 / SH2000)
SK2000 _{ch-half}	912.0	74.6	12.2	1.5 (SK2000 _{ch-half} / SK2000 _{dis})	1.4 (SK2000 _{half} / SH2000 _{half})
SK2000 _{dis}	592.1	63.2	9.4	-	-
SH2000 _{ch}	620.8	67.8	9.2	1.2 (SH2000 _{ch} / SH2000 _{dis})	-
SH2000 _{ch-half}	821.5	94.3	8.7	1.1 (SH2000 _{ch-half} / SH2000 _{dis})	-
SH2000 _{dis}	548.0	70.6	7.8	-	-
SK1000 _{ch}	616.9	124.8	4.9	1.0	0.8 (SK1000 / SH1000)
SK1000 _{dis}	277.2	53.8	5.2	-	-
SH1000 _{ch}	657.9	97.5	6.8	1.3	
SH1000 _{dis}	289.1	76.6	3.8	-	-

<u>⁷Li固体NMRスペクトル</u>

いずれもOppm近傍にシャープなピークと高磁場側にブロードなピークが観測された。 ブロードなピークはSK、SHではSKの方がより高磁場側に現れ、また、充電に際して 低磁場側にケミカルシフトすることが確認された。

<u>⁷Li固体NMRスペクトル</u>

<u>⁷Li</u>固体NMR測定によるEDLC電極の活性炭細孔内における 電解質イオンの吸着特性

サンプル	Li+ (LiPF ₆) [×10 ³]	Li+ (LiOH) [×10³]	Li+ 吸脱着量 (Li+ (LiPF ₆)/Li+ (LiOH))	Li+ 吸脱着量比 (SK/SH)
SK2000 _{ch}	738.6		1.41	1.6 (SK2000 _{ch} / SH2000 _{ch})
SK2000 _{ch-half}	756.1 1.44		1.44	1.8 (SK2000 _{ch-half} / SH2000 _{ch-half})
SK2000 _{dis}	704.1	E2E 4	1.34	-
SH2000 _{ch}	453.9	525.1	0.86	-
SH2000 _{ch-half}	414.6		0.79	-
SH2000 _{dis}	413.9		0.79	-

キャパシタンスとLi+、PF₆-イオンの移動量との関連性

サンプル	PF ₆ ⁻ 吸脱着量比	Li ⁺ 吸脱着量比	F/g比
	(SK/SH)	(SK/SH)	(SK/SH)
SK2000/SH2000	1.6	1.6	1.6
満充電状態	(SK2000 / SH2000)	(SK2000 _{ch} / SH2000 _{ch})	
SK2000/SH2000 半充電状態	1.4 (SK2000 _{half} / SH2000 _{half})	1.8 (SK2000 _{ch-half} / SH2000 _{ch-half})	1.5

PF₆-吸脱着量比、Li⁺ 吸脱着量比、F/g比いずれもSKの方が高い値を示し、 それぞれに良い相関が見られた。これまでにPTFEを内部標準試料として フッ素を含む電解質の定量が可能であることが分かっていたが、Liについ ても定量的な解析が可能であると考えられる。

端面による効果?

Effect of wall surface

<u>Contribution to chemical shift</u> (Ring current effect)

Contribution to capacitance

Adsorption on the edge \rightarrow Lower magnetic field shift, Higher capacitance \rightarrow SK2000 is conjectured to have more edges on the pore walls Adsorption on the basal planes \rightarrow Higher magnetic field shift, lower capacitance \rightarrow SH2000 might have less edges on the pore walls

Surface modified PCNFs

Lim, S., et al., J. Phys. Chem. B, 2004, 108(5), 1533-1536

Capacitances of PCNF series

Cyclic voltammogram (CV) in 0.5 M H₂SO₄

<u>Langmuir</u> 2006, 22(22), 9086.

Influence of surface structure on capacitances

Surface features	Sampla	BET surface	Capacitance		
Surface reatures	Sample	area (m²/g)	F/g	F/m ²	
	HCNF	126	23.4	0.19	
Edge	PCNF	72	12.5	0.17	
	GPCNF-NA	58	5.6	0.10	
Basal	GPCNF	51	3.1	0.06	
	GPCNF-M	53	3.3	0.06	
	TCNF	98	4.5	0.05	

• *Capacitance per weight* : Edge is 2–5 times higher than basal plane.

· *Capacitance per surface area* : Edge is 2-4 times higher than basal plane.

3. 経口用薬

インドールとアミラーゼの選択的吸着挙動に与える 経口用活性炭の表面・細孔構造因子の解明

慢性腎不全症

体内の有害物質を除去する腎臓の機能が低下 → 人工透析を導入し、老廃物などを除去

患者に大きな 負担をかける。

人工透析の導入時期を延期するため、経口用活性炭薬を服用

経口用活性炭薬

- ・腸内で選択的物理吸着を原理として、有害物質を吸着し 便とともに排泄させることで、有害物質の体内への吸収を 抑制することができる。
- 体質によって便秘を起こす場合がある。
- ・1日6gという大量服用が患者に大きな負担となる。

少量で選択的かつ高い吸着能を持つ 経口用活性炭薬の開発

吸着特性に影響を及ぼす要因

- 比表面積及び細孔径
- ·形状
- ·表面特性

モデル吸着物質 除去すべき物質 インドール (分子量: 117.15) ⇒毒性物の一種

・除去してはいけない物質

アミラーゼ (分子量:約46,000) ⇒膵液や唾液に含まれる消化酵素

OGシリーズ(大阪ガス(株)提供)

比較的均一なミクロ孔を持ち、賦活時間により比表面積、 細孔径が制御されている活性炭素繊維

・比表面積及び細孔径
 ・表面特性

OGシリーズを水素中熱処理(600℃、1時間)により表面官能基を 除去した活性炭素繊維

球状活性炭シリーズ

粒径約100~300µmである球形状の活性炭

U _s 所件が「															
		OG5A	OG7A	OG10A	OG15A	OG20A	H ₂ –OG 5A	H₂−OG 7A	H ₂ -OG 10A	H ₂ -OG 15A	H ₂ -OG 20A	SAC	OAC	Scmep	SACmip
槽)	A _{micro}	646	982	1283	1688	1928	728	1247	1305	1548	1802	1254	1585	570	1409
表面 ^{2/g} /g/	A _{meso}	0	0	0	0	0	0	0	0	0	0	56	0	108	143
<u>म</u> ्	A $_{external}$	0.3	0.3	0.1	0.3	0.3	0.4	0.1	0.3	0.3	0.5	6.6	1.4	0.2	0.4
년 (王) (王)	W _{micro}	0.65	0.68	0.74	0.90	1.11	0.65	0.70	0.75	0.91	1.11	0.69	0.96	0.64	0.74
和 和 L L L L	d _{meso}	0	0	0	0	0	0	0	0	0	0	12.0	0	5.85	3.24
表面官	能基量(%)	14.3	19.0	22.2	12.8	12.1	6.0	5.2	4.5	2.5	2.6	15.1	4.7	6.0	4.4

吸着量測定方法

- 1. インドールとアミラーゼの水溶液を製作
- 2. インドール及びアミラーゼ水溶液(40 ml)に 活性炭素材料(8 mg)を分散
- 3. 25℃で指定時間撹拌(3 min~96 h)
- 4. 活性炭素材料をフィルター(0.20 µ m)で除去
- 5. 紫外可視分光器により測定した吸光度から 濃度を計算

インドールとアミラーゼの最大 吸光波長である269 nmまたは 279 nmの値を用いて算出

	OG5A	OG7A	OG10A	OG15A	OG20.
平均細孔径(nm)	0.65	0.70	0.75	0.91	1.11

	比表面積 (m ² /g)	細孔径 (nm)	除去率 (%)	比表面積当たりの 平衡吸着量 (mg/m ²)
H ₂ -OG5A	728	0.65	83.4	0.232
H ₂ -OG7A	1247	0.70	94.4	0.153
H ₂ -OG10A	1305	0.75	94.1	0.146
H ₂ -OG15A	1548	0.91	96.0	0.126
H ₂ -OG20A	1802	1.11	93.8	0.108

インドールの吸着に適した活性炭は...

- ・比表面積が大きい
- ・細孔が浅い
- ・表面官能基が少ない
- ・細孔径が小さい
 - ⇒細孔径が非常に小さい時はインドール分子の 拡散阻害が観察されたため、細孔径は 0.7 nmが適している。

		OG5A	OG7A	OG10A	OG15A	OG20A	SAC	OAC	SCmep	SACmip	
除去率(%)		3.9	7.2	5.9	7.1	9.8	8.2	5.8	5.0	9.2	
	 ・活性炭の違いによる吸着率の差は顕著ではない ・アミラーゼは分子量が非常に大きい物質であり、除去率は10% 以下とインドールに比べ非常に低い 										

インドールの除去率の変化

アミラーゼの除去率の変化

	OG5A	OG7A	OG10A	OG15A	OG20A		OG5A	OG7A	OG10A	OG15A	OG20A
単独吸着	74.3	77.5	78.3	88.1	86.7	単独吸着	3.9	7.2	5.9	7.1	9.8
混合吸着	43.1	63.3	63.8	69.9	68.6	混合吸着	10.5	17.4	17.8	20.4	17.4

OG5A OG7A OG10A OG15A OG20A

インドールの除去率(%)	OG5A	OG7A	OG10A	OG15A	OG20A
表面官能基が少ない場合	49.9	70.1	69.3	70.9	72.1
表面官能基が多い場合	43.1	63.3	63.8	69.9	68.6
アミラーゼの除去率(%)	OG5A	OG7A	OG10A	OG15A	OG20A
表面官能基が少ない場合	16.5	26.7	26.6	26.3	24.7
表面官能基が多い場合	10.5	17.4	17.8	20.4	17.4

混合吸着の時は細孔径0.7 nmのOG7Aでも拡散阻害が観察される。 ⇒ 0.75 nm以上のミクロ孔が適している。

1. インドールの吸着 比表面積が大きく、細孔が浅く、表面官能基が少なく、かつ 細孔径約0.7 nmのミクロ孔がインドールの除去に適している。

2. アミラーゼの吸着

活性炭の違いによる吸着率の差は顕著ではない。

3. アミラーゼ共存時のインドールの選択的吸着 表面官能基が多くて、細孔径0.75 nmのミクロ孔が適している。

選択的かつ高い吸着能を持つ経口用活性炭薬では…

比表面積が大きく、細孔が浅く、表面官能基が多く、 かつ0.75 nmのミクロ孔を持つ活性炭が望ましい。

4. Capacitive De-ionization (CDI)

	RO (Reverse Osmosis)	ED (Electro Dialysis)	Electric Desalt
Merit	•High performance	●Selective removal of ion	Low energy consumptionLow fee of maintenance
De- merit	 Fouling phenomenon High operation cost Low collection ratio from non- treated water High cost for maintenance Environmental contamination 	High cost membraneHigh cost for maintenance	•Low removing performance of ion

<u>Objective</u>

- Development of cost effective, long time maintenance free ion-removing system using EDLC principle
- Development of high performance activated carbon based thin electrode for electro-desalt system
- Investigation on the selective ion removal by structure of electrode and activated carbon

• Electric-desalt system.

- Thinner electrode
 - Rapid electrochemical adsorption and desorption .
 - Activated carbon of large surface area and small particle size

電極の調製

<u> 硝酸性窒素イオンの脱塩特性</u>

■ 硝酸性窒素イオンにおける脱塩特性は

Max-IIIが最大特性を示した。

- 三井鉱産のコークスがOGシリーズより良かった。
- Maxsorb > Mitsui cokes > OG series

Effect of flow rate

Effect of concentration

Cl⁻ ions in the city water

Effect of flow rate

<u>CDII: 適した活性炭は?</u> <u>1. 高電気伝導度?</u> 2. 高細孔内拡散性

How to solve?

5. Heat Pump (省エネルギー応用)

Thermal Powered Cooling System

ACF based adsorption system may lead to the use of unexploited low-temperature solar /waste heat that may offer an attractive possibility for improving energy conservation and efficiency.

The schematic diagram of the two-bed AC-ethanol adsorption cycle (Mode A).

Saha et al. Renewable and Sustainable Energy Reviews 15 (201 1) 1708–1721 <u>Cooling systemに適した活性炭は?</u> <u>1. 大量吸着性(Methanol, ethanol)</u> <u>2. 高吸脱着レート(High coefficiency)</u> <u>3. 高熱伝導度?</u>

How to solve?

Acknowledgements

- The works were partially done within the category of CREST program of JST. We are sincerely appreciated to the financial support of JST.
- A part of works was also supported by a grant from the Global-Center of Excellence (G-COE) in Novel Carbon Resource Sciences, Kyushu University. And, the authors are grateful for financial assistance provided by the Global-Centre of Excellence in Novel Carbon Resource Sciences, Kyushu University.
- The authors are very grateful to Dr. An Bai, Dr. Jang Sang-Min, Dr. Kim Taegon, Ms. Ideta Keiko, Mr. Lee Gang Ho, Mr. Saito Masanori, Mr. Yeh Joonyoung, Mr. Shingai Yusuke and other lab members for their contributions on the works.

