

九州大学 先導物質化学研究所 宮脇 仁

miyawaki@cm.kyushu-u.ac.jp

表面

考慮する物性に依る

表面エネルギー

1

電子分布のずれ

図3-15 (a) 9枚の原子層からなる Cu(001) 面の価電子密度。

Ref.) 表面科学入門, 丸善(1994).

表面エネルギー

表面

<u>刺激</u>

- ·探索プローブ
 電子(e⁻)、光子(hv)、陽電子(e⁺)、
 原子・イオン・分子(M, M^{*})、etc.
- ・加熱(*kT*)
- •磁場(E)、電場(B)印加
- ▪探針 etc.

- ・散乱プローブ粒子
- ・放出プローブ粒子
- ・探針に働くカ
- ・表面温度

etc.

表面を調べる

エネルギー(分光)測定 角度分解(回折)測定 スピン偏極測定 偏光測定 励起状態測定 質量測定 電子状態測定 時間分解測定 比熱測定

表面敏感性を高めるには

試料との相互作用大

刺激の入射方向・応答の検出方向

4

試料表面との角度小

表面の構造解析

1. 表面(2次元)原子構造:表面全体の平均原子配列

- ・低速電子回折法(LEED, Low Energy Electron Diffraction)
- ・反射高速電子回折法(RHEED, Reflection High Energy Electron Diffraction)
- ·透過電子回折法(TED, Transmission Electron Diffraction)
- •X線回折法(XRD, X-Ray Diffraction)

表面の構造解析

2. 局所構造:ある原子の周りの原子配列

<u>入射X線、電子→ 内核電子やオージェ電子が真空中に放出 → 周囲の原子によって回折</u>

- ・X線光電子回折法(XPD, X-ray Photoelectron Diffraction)
- ・オージェ電子回折法(AED, Auger Electron Diffraction)
- 入射イオンの表面原子による散乱
 - ・低速イオン散乱分光法(ISS, low energy Ion Scattering Spectroscopy)
 - ・ラザフォード後方散乱(RBS, Rutherford Back scattering Spectroscopy) 数百keV以上

3. 実空間観察

- ·透過型電子顕微鏡法(TEM, Transmission Electron Microscopy)
- ・走査型電子顕微鏡法(SEM, Scanning Electron Microscopy)
- ・走査プローブ顕微鏡法(SPM, Scanning Probe Microscopy)

トンネル電流:STM 原子間力:AFM 磁気力:MFM

50~1500 eV

~数keV

~数keV

直接観察

✓2次元周期的原子配列✓各種表面欠陥の空間分布

KYUSHU UNIVERSITY

表面の構造解析

Si (111)

http://hooktail.sub.jp/solid/STM/

図5-50 Au(110)2×1原子列欠損再構成構造の高分解能電子顕微鏡像。図 2-12 の側面 図に対応する。(文献 35 による)

3. 実空間観察

Ref.) 表面科学入門, 丸善 (1994).

7

- ·透過型電子顕微鏡法(TEM, Transmission Electron Microscopy)
- ·走査型電子顕微鏡法(SEM, Scanning Electron Microscopy)
- ・走査プローブ顕微鏡法(SPM, Scanning Probe Microscopy)
- トンネル電流:STM 原子間力:AFM 磁気力:MFM

直接観察

✓2次元周期的原子配列✓各種表面欠陥の空間分布

構成元素の同定と濃度測定

表面の組成分析

表面の組成分析

- 1. 内殻電子エネルギー準位による組成分析
- 電子線照射 → 光電子放出/空孔生成 →
 - ・オージェ電子分光法(AES, Auger Electron Spectroscopy)
 - ・電子プローブマイクロアナリシス法(EPMA, Electron Probe Micro Analysis)

KLMオージェ電子の運動エネルギー *E E* = *E*_K – *E*_L – *E*_M - *φ*

EDS, Energy Dispersive Spectroscopy WDS, Wavelength Dispersive Spectroscopy

2. 原子の質量による組成分析

<u>外部エネルギー照射による表面元素の取り出し(スパッタリング)</u>

- ・二次イオン質量分析法(SIMS, Secondary Ion Mass Spectroscopy)
- ・レーザーマイクロプローブ質量分析法(LAMMA, Laser Microprobe Mass Analysis)

Ref.) 表面科学入門, 丸善(1994).

表面の組成分析

単位時間に検出されるイオン*i*の個数N_i N_i ~ C_i S_i K_i

> C_i: 試料表面における元素iの濃度 S_i: 原子iのスパッタリング効率 K<u>i: 原子iのイオン化率</u>

> > → 入射イオン種に依存

電気陰性度が大きい元素を入射イオン → 電気陰性度が小さい元素のイオン化率 大

表面の組成分析

2. 原子の質量による組成分析

<u>プローブの散乱時における運動エネルギー損失</u>

11

・イオン散乱分光法(ISS, Ion Scattering Spectroscopy) イオンのエネルギー: ~数keV

・ラザフォード後方散乱(RBS, Rutherford Back scattering Spectroscopy) 数百keV以上

表面の分析法のまとめ

FT-IR

http://www.kobelcokaken.co.jp/zigyou/kadaikaiketsu/it/panf_hyouka/index.html

~数%

10 nm ~ 20 µm

表面の性質	関連する物性	応用分野
機械的性質	潤滑性 大きな摩擦係数 耐摩耗性 硬度	ピストンなどの稼動部 タイヤ、プーリー/ベルトなどの動力伝達部 磁気ヘッド 工具
化学的性質	反応活性 表面不活性	触媒 センサー 防食、撥水・防汚
電気的性質	電気伝導度 電荷蓄積 光閉じ込め 光電効果 二次電子放出	トランジスタ、集積回路 メモリー素子 半導体レーザー 撮像管 電子増倍管
その他	結晶成長 極限環境下の表面	半導体素子、水晶発振器 宇宙ロケット(耐熱など)

表面の性質	関連する物性	応用分野
機械的性質	潤滑性 大きな摩擦係数 耐摩耗性 硬度	ピストンなどの稼動部 タイヤ、プーリー/ベルトなどの動力伝達部 磁気ヘッド 工具
無断階変 化学 金属ベル よって連続	を機(CVT) トとプーリーの摩擦に 的に変速	触 セ 防
電気的性質	電気伝導度 電荷蓄積 光閉じ込め 光電効果 二次電子放出	ト・ 大 田 福
その他	結晶成長 極限環境下の表面	半 プーリー 宇

http://www.nsc.co.jp/monthly/pdf/2006_7_160_17_20.pdf

	表面の性質	関連する物性	応用分野		
		潤滑性 大きな摩擦係数	ピストンなどの稼動部		
	機械的性質	耐摩耗性	磁気ヘッド		
		使度	工具		
硬 1. 2. 3. 4.	 ●ロムめっき(用途に合わせて3µm~数百µm) ・ 硬さが極めて高い。ビッカース硬さ800~1100 (普通鋳鉄 220~270、ダイヤモンド 8000) 2. 溶融点が高い。約1800°C(普通鋳鉄1200°C程度) 3. 熱伝導性、耐食性に優れる。 4. 摩耗係数が小さく、耐摩耗性に優れる。 				
	その他	July10上はJ	撮像管 0.1 Mating material FC 70@×50 最像管 電子増倍管 0.0 5×5×20 半導体素子、7 0.0 1.5 2.0 宇宙ロケット(耐熱など)		

http://www.fm-007.com/plating/image/cr_catch_b.jpg

http://www.riken.co.jp/products/piston/piston2.html

表面の応用分野

http://www3.ocn.ne.jp/~fujifine/P7/shohinhyoumenhimaku.html

表面の応用分野

炭素材料の表面

天然黒鉛の端面(edge)と基底面(basal)の反応度比は1173 K、 50 Torrの空気中で10¹²。

端面のうち、Zigzag面はArmchair面に較べて1119 K、10 Torr の酸素中で1.2倍の反応度比。

炭素材料の酸素含有表面官能基

(a)酸素表面官能基

19

炭素材料の窒素含有表面官能基

Fig. 1. Nitrogen functional forms possibly present in carbonaceous materials, with their N 1s electron binding energy.

Fig. 4. Structure of the char precursors carbazole, acridine and polyacrylonitrile.

Fig. 5. Nomenclature used for nitrogen atoms incorporated in peri-naphthene and the structure of 4,12-dimethyl 3,5,11,13-tetraazacycl[3.3.3]azine[62].

Carbon, 33, 1641 (1995).

20

活性表面積の評価方法

<u>活性表面積(ASA, Active Surface Area)</u>酸素原子は端面炭素原子に1:1の割合端面炭素は端面で0.083 nm²の面積

化学吸着法 (a) 炭素エッジ面 (b) 1223 Kまで真空中で熱処理して含酸素化合物を脱離 71-411, (c) 573 KでO2を化学吸着 0 0 0 (d) 1223 Kまで真空中で熱処理して脱離してくるCOxを定量