

1900	~		
12001	~		2400°C
	L.09 0.00 L.09	60 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

<u>Surfa</u>	ce Area, Pore: Depth & Volume
	Surface Structure
	Surface Chemisury Based and Edge Plane Substituents
	Hetero Atoms in Hexagon
Carbo	on Structure of Wall
	Micro, Nano, Macro Structure of Carbon Wall
	-Graphitization Extent
	-Domain Structure
	Density, Reactivity (Activated Surface)
	Procureor - Structure and Possitivity

Pitch-based activated carl	oon fibers (ACFs) use	d in this st	udy.	00
OG5A, OG7A, OG10A, O	G15A and (JG20A we	ere provideo	d by Osaka	a Gas Co.
ome physical properties o	of ACFs give	en by Osal	ka Gas Co.		
	OG5A	OG7A	OG10A	OG15A	OG20A
		050		4705	
pecific surface area (m²/g)	480	850	1300	1/25	2000
pecific surface area (m²/g) rerage pore size (nm)	480 1.4	850 1.6	1300	1725	2000

Pitch based	BET	Elemental analysis (wt %)				N/C
ACF	(m^2 / g)	С	н	Ν	0	N/C
OG5A	563	92.4	0.6	0.7	6.0	0.007
OG7A	901	93.0	0.6	0.8	5.4	0.007
OG10A	1085	95.3	0.6	0.5	3.4	0.004
OG15A	1606	95.2	0.6	0.3	3.4	0.003
OG20A	1924	94.1	0.6	0.4	4.8	0.003
PAN based	BET		Elemental analysis	nalysis (wt %)	sis (wt %)	
ACF	(m ² /g)	С	Н	Ν	0	, inte
FE100	450	70.9	2.0	8.4	17.3	0.102
FE200	650	72.5	1.8	4.8	17.9	0.057
FE300	880	74.3	1.6	3.3	17.2	0.038
FE400	1020	76.8	1.6	2.3	19.4	0.026

Some Properties of ACFs

I nen buseu	BET	Elemental analysis (wt %)				NIC
ACF	(m^2 / g)	С	Н	Ν	0	
OG5A	563	92.4	0.6	0.7	6.0	0.00
OG7A	901	93.0	0.6	0.8	5.4	0.00
OG10A	1085	95.3	0.6	0.5	3.4	0.00
OG15A	1606	95.2	0.6	0.3	3.4	0.00
OG20A	1924	94.1	0.6	0.4	4.8	0.00
PAN based	BET	Elemental analysis (wt %)				N/(
ACF	(m^2 / g)	С	Н	Ν	0	
	450	70.9	2.0	8.4	17.3	0.10
FE100		72.5	1.8	4.8	17.9	0.05
FE100 FE200	650	12.5	110			
FE100 FE200 FE300	650 880	74.3	1.6	3.3	17.2	0.03

Sample	Internal Standard	Pyridinic N ^a	Internal Standa /Pyridinic N	
FE100	279	134	0.48	
FE200	276	108	0.39	
FE300	332	70	0.21	
FE400	330	64	0.19	

Comparison of formaldehyde adsorption in different ACFs between dry and wet condition

Steam vs. Chemical Activations

What is the difference:

• Surface area, pore size and its distribution

63

- Surface compositions
- Surface structure (?)
- Cost
- Waste materials

Capacitance, cost, ... How to overcome the differences?

ntersity

icture of A	ctivated Carbon
• <u>Surface</u>	Area, Pore: Depth & Volume
Surfac	ce Structure
Surfac	ce Chemistry
Based	and Edge Plane
Hetero	o atoms in Hexagon
• <u>Carbon S</u> Nano	<u>Structure of Wall</u> , Micro, Macro Structure of Carbon Wall
-Grapl	hitization Extent
-Doma	ain Structure
\rightarrow	Density, Reactivity (Activated Surface)
	Precursor : Structure and Reactivity
USHU UNIVERSITY	

Conclusion

- Carbon is a key material for energy and environmental devices.
- Full understanding of carbon structure is necessary for useful applications
- Korea has a lot of sources for carbon materials.
- <u>No manpower and skill for carbon manufacturing.</u> <u>University:</u>
- * Changing the consciousness
- * Creation and leading of projects
- * Manpower cultivation
- 🖑 KYUSHU UNIVERSITY