1

	-00 -	1	化合物	結合解離エネル (kcal/mol)	ギー	結合距離 (À)
	109.5	H ₃ C	C-C₃H	88		1.53
	2.00.00.00.00	H ₂ C	C=C ₂ H	163		1.34
s	p, sersante	HC	≡CH	198		1.21
-			1	そ-2 炭素同素体の種	類3)	
100 m	(sp ²)	結合の種類	配位数	炭	素同素体	
and the second second second second second	\sim	sp	2	カルビン (ポリイン,	フムレン)	1
Interes	120*	sp ²	3	グラファイト (六方晶	菱面体	品)
	p2 濯成載道			フラーレン (C60, C70,	バッキイ	チューブなど)
	- ucounte	SD3	. 4	ダイヤモンド(立方晶	六方晶.	菱面体晶*)
				ダイヤモンド多形体	6H. bc-8	など)
Concernance -				ダイヤモンドライクカ	ーボン	(DLC) . i-カーボン
8 8 10	\sim	イオンまたに	6	単純立方品*. β-スズ型	ð.	
- 15-	T((sp))	金属的	8	体心立方晶*	-	
South and the set		20.0407	12	而心立方品* 六方最寒	*东道*	
	180'	* 実!		4 N#-10+10	107 A)	
					д.,	
	P GERRAND		件(ロ ダイヤモンド	8-SiC	Si
	- 熱波な神の実」な時の相景	格子后	数 (Å)	3.567	4.358	5.430
π朝知道の)観形	の軌道を味く起した時の配置	密度	(g/cm ³)	3.515	3.216	2.328
(a)	(b)	熱膨引	[率 (×10-4/	C) 1.1	4.7	2.6
		融点	(U)	4000	2540	1420
図-1 /	炭素の混成軌道	521	イマリフ し	v) 5.45 m2//V (S))	3.0	1.1
		-11.	子 39802 6	2200	400	1500
		*-	n	1600	50	600
		熱伝導	咩 (W/(cm・	K)) 20	5	1.5
		100 - 100	(, ,)	10000		

Carb heterog	bon supports for ogeneous catalysts				
Carbon supports	Electron conductivity, Chemically inert, High surface area, Usable functional groups, Processability, Cost, Long life,				
Activated carbon	High surface area, Chemically inert, Processability, Cost				
Carbon black	Electron conductivity, Chemically inert, Hig surface area, Usable functional groups, Dispersion property				
Graphite	Electron conductivity, Chemically inert, Cos Long life, high crystallinity,				

Required Properties for Useful Applications

As a carbon : General properties of bulk carbon

- > Electrical and thermal properties
- High mechanical properties
- ➢ High surface area, porosity
- ➤ Graphitization properties
- > Chemical properties as a carbon

As a nano-materials

- ➢ Nano size effect
- Regularity effect
- ➢ Quantum effect

Franklin Model of Carbon		
Cluster (Microcrystalline unit carbon)	→ Graphitic → Intermediat → Non-graphit	e tic
Angstrom- and Nano-scopic Views o	f Current	Carbons
<u>1. Three Dimensional Arrangements</u> : Fibers, Needle Col (Carbon Shape)	ke, Glassy Car	bon
2. Regions of Uniform Arrangement : Nano-Domain → (Structural Hierarchy)	Microdomain	i → Domain Optical Texture
	Microfibril	\rightarrow Fibrils
3. Variety of Cluster : Single, Double, Triple, Layers	с.	
Size - Nano to Several Meters		
Nano-Carbons and Their Units		
<u>4. Graphene → Hexagonal Sheet</u>		
(Size and Shape)		
Inter-unit Spaces: Voids, Defects, and Vacancy		

17

<u>カルビンについての計算データ</u>

計算方法	バンドギャップ [eV]	BLA [*] [Å]
Hartree-Fock 結晶軌道 ^b	14	0.26
DFT 結晶軌道 [。]	0. 320	0. 036
オリゴイン計算値(DFT)の外挿	2. 211 ^d	0. 134°
オリゴイン実験値の外挿	2.3~2.4	0.13

^bMinimum contracted Gaussian set, ^cB3LYP/6-31G*, ^dB3LYP/6-31G*//KMLYP/6-31G*, ^cBHandHLYP/6-31G*

72

	表4.3 ダイヤモンドの分類
タイプ	性質・特徴
Ia	通常の天然ダイヤモンドで無色。 0.1%までの N を含む、N は小集合体を作っている。
Ιb	天然物としてはまれだが、合成ダイヤモンドの多くがこれ、100 ppm 以下程度のN3 均一な置換型不純物として含み、わずかに黄色を呈する。
Πa	合成により得られる最高純度のダイヤモンドで、天然のものよりN含有量が少ない.
Шb	天然ダイヤモンドで、わずかに青色を呈する。100 ppm 以下程度の B が置換型不純 として入っている。したがって p 型半導体である。

表4.4 いくつかの固体の熱伝導率 [Wm ⁻¹ K ⁻¹]*					
医体化	温度 [K]				
	50	100	200	300	400
Cu	-	428 (150 K)	404 (250 K)	398	-
Ag	700	450	430	427	420
Au	420	345	327	315	312
Ве	4000	990	301	200	161
C (ダイヤモンドI)	3560	3010	1420	900	652
C (ダイヤモンドⅡa)	9300	10000	4040	2310	1550
C (ダイヤモンドIIb)	5960	5450	2260	1350	936
C (熱分解グラファイト⊥c)	2300	4980	3250	2000	1460
C (熱分解グラファイト c)	103	39	15	9.5	7.0

炭素の化学反応(ガス化反応) 気相反応:無触媒ガス化、触媒ガス化 気相反応:無触媒ガス化、触媒ガス化 液相反応:湿式ガス化反応、電気化学反応 固相反応:炭素還元反応、炭素生成反応 一個相反応:炭素還元反応、炭素生成反応 一個相反応:大家還元反応 一個相反応:大家還元反応 一個相反応:大家還元反応 一個相反応:大家還元反応 一個相反応:大家還元反応 一個相反応:大家還元反応 一個相反応:大家 (1990) 一個相反応:大家 (1990) 一個相反応:大会応 一般素のガス化反応:工業的に重要 - 石炭の燃焼・ガス化 - 高炉のコークスのガス化 - 炭素質が付着した触媒の再生 - 活性炭素の製造 - 炭素質の耐酸化性の改善