素子材料工学基礎 第1講義

Fuctional carbon materials

Yoon, Seong-Ho

Institute for Materials and Engineering Chemistry, Kyushu University Kasuga, Fukuoka, 816-8580, Japan yoon@kyushu-u.ac.jp

Application of carbon materials

Forecast of World Energy Demand

China is the main driver of increasing energy demand in the current decade, but India takes over in the 2020s as the principal source of growth

Forecast of World Energy Compositions

Growth in total primary energy demand

Today's share of fossil fuels in the global mix, at 82%, is the same as it was 25 years ago; the strong rise of renewables only reduces this to around 75% in 2035

•Marked Increase of Energy Demand in Asia and Africa in 21st Century

- Population x Demand/Head
- ☆ Three to Four Times of Current Demands of Fossil Fuels ⇒ Increasing By-products of Fossil Fuels

Issues

- Supply
- CO₂ Emission Enhances Global Warming
- Effective utilization of by-products of fossil fuels

From fossil fuel to functional carbons

Raw materials and precursors for carbons

Raw materials

Coal tar Polymer: Thermosetting and thermoplastic Heavy oil and residues Biomass

Precursor

- Pitches: CF, ACF, MCMB, Ball type AC, Binder pitch, Additives
- Polymer: AC, ACF, Glassy carbon, CF
- Cokes: Electrode, Capacitor, Battery anode, AC, Additives
- Char: AC, Additives, Reducer for Solar cell

A Historical Development of Carbon

(Data : Tanso, 2011"Focusing on the commercial aspect of carbon")

<u>Carbon Industry – Chain Industry</u>

Carbon industry is <u>a growth industry</u>.

- Energy-saving and environmental protecting are most important in modern society.
- Functional carbons are key materials for the energysaving and environmental protecting technologies.
- <u>The world markets for functional carbons are still</u> <u>increasing with increasing of energy and</u> <u>environmental related industries.</u>

Steel-Making

<u>Graphite electrode</u> → Needle coke + Binder pitch (Impregnation pitch)

Blast Furnace

Electrical Arc Furnace

World-wide Record/Outlook for Crude Steel

Aluminum Smelting Cell Configuration

<u>Graphite electrode</u> → Pitch coke + Binder pitch (Impregnation pitch)

World-wide Record/Outlook for Aluminum

(Data : CRU The Five Year Outlook for Carbon Products 2012 Edition)

World-wide Record/Outlook for Petroleum Coke

Carbon is key element for Batteries !!

①Li-ion

②Dry Battery

[Cheap] [Easy Available]

(+) : LiCoO2(-) : Carbon(Graphite)Conductor :Carbon

(+): MnO2(-): ZnConductor: Carbon

③Ni-MH

[High power] [Total balance]

(+) : <u>(Ni-Co)(OH)₂</u> (-) : <u>Mm(Ni-Mn-Al-Co)₅</u> substrate:Nickel and Carbon

World-wide Record/Outlook for Lithium-ion Battery

World-wide Record/Outlook for Photovoltaic

(Data :RTS Corporation. July, 2013)

Crucible for polycrystalline silicon manufacturing

CZ Furnace for single crysral silicon manufacturing

PV Panel

Synthetic graphites for semi-conductors

World-wide Record/Outlook for Semi-Conductor

(Data :World Semiconductor Trade Statistic. June, 2013)

Million US\$

l hoprielary & Comidentia

Activated Carbons

Activated carbon fiber	Activated carbon
Large surface area	Small surface area
(Large micropore volume)	(Large macropore volume)
Adsorption-desorption	Mainly adsorption

World market trend of activated carbon

Activated Carbon Output in China, 2002-2012

World market of activated carbon, 1995-2012

Carbon Fiber

Anamarum sheet Stanoum pytons

50 FUSO Ecc USO and succession

宇宙航空研究開発機構 提供

1.000000

宇宙航空研究開発機構 提供

2

World market trend of carbon fiber

www.torayca.com

Carbons until now

Precursors come from good raw materials such as coal tar and FCC-DO

No designed technology. Only experience is Know-how.

Developed countries who have long history of development only get chance to produce the advanced carbons such as T-800 and premium class needle coke.

Carbons of general performances are only produced in under-developed countries

Pitch and coke based carbon technology only get a markets for applications

During last decade, we recognized carbon materials are the best key materials for energy-saving and environmental protections.

Market forecast of nanocarbons

Source : Mitsubishi Cooperation, 2001, 8

Processing degree

<u>Nano-carbons</u>

- Fullerenes, carbon nano-cages, carbon onions, ...
- Carbon nanotubes, carbon nanofibers, carbon nanowires
- Graphene oxides, graphenes

Nano-carbons have been intensively studied during last 30 years.

Industry for large consumption was failed to achieve.

Successful in the science level but failed to attain to engineering one

No target specifications

Nano-carbons made us recognize that carbons are key materials for energy-savings and environmental protections. Nano-carbon science informed to us many specific properties of carbon materials and possible routes for design.

Is it possible to design the carbon materials using conventional raw materials or precursors? What we have to do for it?